Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 1, Janvier 2002
Page(s) 45 - 54
Section M/S Revues : Articles de Synthèse
Publié en ligne 15 janvier 2002
  1. Holbrook KA, Wolff K. The structure and development of skin. In: Fitzpatrick TB, et al., eds. Dermatology in general medicine. New York: McGraw-Hill, 1993 : 97–144.
  2. Fuchs E, Byrne C. The epidermis: rising to the surface. Curr Opin Genet Dev 1994; 4 : 725–36.
  3. Steinert PM. The complexity and redundancy of epithelial barrier function. J Cell Biol 2000; 151 : F5–7.
  4. Fuchs E. Keratins and the skin. Annu Rev Cell Dev Biol 1995; 11 : 123–53.
  5. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63 : 345–82.
  6. Herrmann H, Aebi U. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 2000; 12 : 79–90.
  7. Coulombe PA, Bousquet O, Ma L, et al. The ’ins’ and ’outs’ of intermediate filament organization. Trends Cell Biol 2000; 10 : 420–8.
  8. Moll R, Franke WW, Schiller DL, et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31 : 11–24.
  9. Powell BC, Rogers GE. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997; 78 : 59–148.
  10. Coulombe PA. The cellular and molecular biology of keratins: beginning a new era. Curr Opin Cell Biol 1993; 5 : 17–29.
  11. O’Guin WM, Schermer A, Lynch M, et al. Differenciation-specific expression of keratin pairs. In: Goldman RD, Steinert PM, eds. Cellular and molecular biology of intermediate filaments. New York: Plenum Publishing Company, 1990 : 301–34.
  12. Paladini RD, Coulombe PA. The functional diversity of epidermal keratins revealed by the partial rescue of the keratin 14 null phenotype by keratin 16. J Cell Biol 1999; 146 : 1185–201.
  13. Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science 1998; 279 : 514–9.
  14. Irvine AD, McLean WH. Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br j Dermatol 1999; 140 : 815–28.
  15. Coulombe PA, Fuchs E, Molecular mechanisms of keratin gene disorders and other bullous diseases of the skin. In: Citi S, ed. Molecular mechanisms of epithelial cell junctions: from development to disease. Austin, TX: R.G. Landes Company, 1994 : 259–85.
  16. Ma L, Yamada S, Wirtz D, et al. A ’hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol 2001; 3 : 503–6.
  17. Takahashi K, Paladini RD, Coulombe PA. Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms.J Biol Chem 1995; 270 : 18581–92.
  18. Blessing M, Zentgraf H, Jorcano JL. Differentially expressed bovine cytokeratin genes. Analysis of gene linkage and evolutionary conservation of 5’-ups-tream sequences. EMBO J 1987; 6 : 567–75.
  19. Takahashi K, Yan B, Yamanishi K, et al. The two functional keratin 6 genes of mouse are differentially regulated and evolved independently from their human orthologs. Genomics 1998; 53 : 170–83.
  20. McGowan K, Coulombe PA. The wound repair-associated keratins 6, 16, and 17. Insights into the role of intermediate filaments in specifying keratinocyte cytoarchitecture. Subcell Biochem 1998; 31 : 173–204.
  21. Porter RM, Hutcheson AM, Rugg EL, et al. cDNA cloning, expression, and assembly characteristics of mouse keratin 16. J Biol Chem 1998; 273 : 32265–72.
  22. McGowan KM, Coulombe PA. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol 1998; 143 : 469–86.
  23. Yoshikawa K, Katagata Y, Kondo S. Relative amounts of keratin 17 are higher than those of keratin 16 in hairfollicle-derived tumors in comparison with nonfollicular epithelial skin tumors. J Invest Dermatol 1995; 104 : 396–400.
  24. McGowan KM, Coulombe PA. Keratin 17 expression in the hard epithelial context of the hair and nail, and its relevance for the pachyonychia congenita phenotype.J Invest Dermatol 2000; 114 : 1101–7.
  25. Moll R, Krepler R, Franke WW. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation 1983; 23 : 256–69.
  26. Weiss RA, Eichner R, Sun TT. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes.J Cell Biol 1984; 98 : 1397–406.
  27. Stoler A, Duvic M, Fuchs E. Unusual patterns of keratin expression in the overlying epidermis of patients with dermatofibromas: biochemical alterations in the epidermis as a consequence of dermal tumors. J Invest Dermatol 1989; 93 : 728–38.
  28. Mansbridge JN, Knapp AM. Changes in keratinocyte maturation during wound healing. J Invest Dermatol 1987; 89 : 253–63.
  29. Paladini RD, Takahashi K, Bravo NS, et al. Onset of reepithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 1996; 132 : 381–97.
  30. Ramirez A, Vidal M, Bravo A, et al. A 5’-upstream region of a bovine keratin 6 gène confers tissue-specific expression and hyperproliferation-related induction in transgenic mice. Proc Natl Acad Sci USA 1995; 92 : 4783–7.
  31. Feinstein A, Friedman J, Schewach-Millet M. Pachyonychia congenita. J Am Acad Dermatol 1988; 19 : 705–11.
  32. McLean WH, Rugg EL, Lunny DP, et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 1995; 9 : 273–8.
  33. Coulombe PA. Towards a molecular definition of keratinocyte activation after acute injury to stratified epithelia. Biochem Biophys Res Commun 1997; 236 : 231–8.
  34. Takahashi K, Folmer J, Coulombe PA. Increased expression of keratin 16 causes anomalies in cytoarchitecture and keratinization in transgenic mouse skin. J Cell Biol 1994; 127 : 505–20.
  35. Paladini RD, Coulombe PA. Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J Cell Biol 1998; 142 : 1035–51.
  36. Bousquet O, Ma L, Yamada S, Gu C, Idei T, Takahashi K, Wirtz D, Coulombe PA. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J Cell Biol 2001; 155 : 747–53
  37. Wawersik M, Coulombe PA. Forced expression of keratin 16 alters the adhesion, differentiation, and migration of mouse skin keratinocytes. Moi Biol Cell 2000; 11 : 3315–27.
  38. Wojcik SM, Bundman DS, Roop DR. Delayed wound healing in keratin 6a knockout mice. Mol Cell Biol 2000; 20 : 5248–55.
  39. Clark RAF. Mechanisms of cutaneous wound repair. In: Fitzpatrick TB, et al. eds. Dermatology in general medicine, vol. 1. New York: McGraw-Hill, 1993: 473–88.
  40. Schermer A, Jester JV, Hardy C, et al. Transient synthesis of K6 and K16 keratins in regenerating rabbit corneal epithelium: keratin markers for an alternative pathway of keratinocyte differentiation. Differentiation 1989; 42 : 103–10.
  41. Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development 1994; 120 : 2369–83.
  42. Sanes JR, Rubenstein JL, Nicolas JF. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 1986; 5 : 3133–42.
  43. Bousquet O, Coulombe PA. Cytoskeleton: missing links found? Curr Biol 1996; 6 : 1563–6.
  44. Murillas R, Larcher F, Conti CJ, et al. Expression of a dominant negative mutant of epidermal growthfactor receptor in the epidermis of transgenic mice elicits striking alterations in hair fol-licle development and skin structure. EMBO J 1995; 14 : 5216–23.
  45. Stoscheck CM, Nanney LB, King LEJ. Quantitative determination of EGF-R during epidermal wound healing. J Invest Dermatol 1992; 99 : 645–9.
  46. Paramio JM, Casanova ML, Segrelles C, et al. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol 1999; 19 : 3086–94.
  47. Liao J, Omary MB. 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J Cell Biol 1996; 133 : 345–57.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.