Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 1, Janvier 2002
Page(s) 111 - 120
Section Forum : Hypothèses Et Débats
Publié en ligne 15 janvier 2002
  1. Gettins GW, Patston A, Olson T. Serpins: structure, function and biology. Austin : R.G. Landes Company, 1996 : 198 p.
  2. Salzet M, Vieau D, Stefano GB. Serpins: an evolutionarily conserved survival strategy. Immunol Today 1999; 20 : 541–4.
  3. Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 2001; 1535 : 221–35.
  4. Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353 : 576–8.
  5. Korpula-Mastalerz R, Dubin A. The intracellular serpin family. Acta Biochem Pol 1996; 43 : 419–29.
  6. Whisstock J, Skinner R, Lesk AM. An atlas of serpin conformations. Trends Biochem Sci 1998; 23 : 63–7.
  7. Wright HT. The structural puzzle of how serpin serine proteinase inhibitors work. Bioessays 1996; 18 : 453–64.
  8. Huntington JA, Read JR, Carell RR. Structure of a serpineprotease complex shows inhibition by deformation. Nature 2000; 407 : 923–6.
  9. Torriglia A, Perani P, Brossas JY, et al. L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin, leucocyte elastase inhibitor. Mol Cell Biol 1998; 18 : 3612–9.
  10. Torriglia A, Perani P, Courtois Y L-DNase II: un nouveau maillon dans les voies de l’apoptose. Med Sci 1999; 15 : 253.
  11. Torriglia A, Perani P, Brossas JY, et al. A caspase-Independent cell clearance program: the LEI/L-Dnase II pathway. Ann NY Acad Sci 2000; 926 : 192–203.
  12. Bauman U, Bode W, Huber R, Travis, J, Potempa J. Crystal structure of cleaved equine leukocyte elastase inhibitor determined at 1.95 A resolution. J Mol Biol 1992; 226 : 1207–18.
  13. Gite S, Reddy G, Shankar V. Active-site characterization of S1 nuclease. II. Involvement of histidine in catalysis. Biochem J 1992; 288 : 571–5.
  14. Ito K, Akiyama D, Minamiura N. Evidence for an essential histidine residue on active site of human urinary DNase I: carboxymethylation and carbethoxylation. Arch Biochem Biophys 1994; 313 : 126–30.
  15. Garinot-Schneider C, Pommer AJ, Moore GR, Kleanthous C, James R. Identification of putative active site residues in the DNase domain of colicine E9 by random mutagenesis.J Mol Biol 1996; 260 : 731–42.
  16. Warren MA, Evans SJ, Connoly B. Effects of nonconservative changes to tyrosine 76, a key DNA binding residue of DNase I, on phosphodiester bond cleavage and DNA hydrolysis selectivity. Prot Eng 1997; 10 : 279–83.
  17. Ho TY, Wu SL, Hsiang CH, Chang TJ, Hsiang CY. Identification of a DNA-binding domain and an activesite residue of pseudorabies virus DNase. Biochem J 2000; 346 : 441–5
  18. Sakahira H, Takemura Y, Nagata S. Enzymatic active site of caspase-activated DNase (CAD) and its inhibition by inhibitor of CAD. Arch Biochem Biophys 2001; 388 : 91–9.
  19. Wittschieben J, Petersen BO, Shuman S. Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease. Nucleic Acids Res 1998; 26 : 490–6.
  20. Liao TH.The subunit structure and active site sequence of porcine spleen deoxyribonuclease.j Biol Chem 1985; 260 : 10708–13.
  21. Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA. Structure and function of the multifunctional DNArepair enzyme exonuclease III. Nature 1995; 374 : 381–6.
  22. Giraud-Panis MJ, Lilley DM.T4 endonuclease VII. Importance of a histidine-aspartate cluster within the zinc-binding domain. J Biol Chem 1996; 271 : 33148–55.
  23. Baker CP, Baron WF, Henzel WJ, Spencer SA. Molecular cloning and characterization of human and murine DNase II. Gene 1998; 215 : 281–9.
  24. Lyon CJ, Evans CJ, Bill BR, Otsuka AJ, Aguileraz RJ. The C. Elegans apoptotic nuclease NUC 1 is related in sequence and activity to mammalian DNase II. Gene 2000; 252 : 147–54.
  25. Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Stucture Fold Des 1999; 7 : 91–102.
  26. Pan CQ, Ulmer JS, Herzka A, Lazarus RA.Mutational analysis of human DNase I at the DNA binding interface: implications for DNA recognition, catalysis, and metal ion dependence. Protein Sci 1998; 7 : 628–36.
  27. Richards FM, Wyckoff H. Bovine pancreatic ribonuclease. In : Boyer PD,ed. The enzymes, vol. 4, 3rd ed. New York : Academic Press, 1971 : 647–806.
  28. Gorlich D. Nuclear protein import. Curr Opin Cell Biol 1997; 9 : 412–9.
  29. Moroianu J. Nuclear import and export pathways.J Cell Biochem 1999; suppl 32-33: 76–83.
  30. Mattaj IW, Conti E. Snail mail to the nucleus. Nature 1999; 399 : 208–10.
  31. Jans DA, Chan CK, Huebner S. Signals mediating nuclear targetting and their regulation: application in drug delivery. Med Res Rev 1998; 18 : 189–223.
  32. Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signal by karyopherin alpha. Structure Fold Des 2000; 8 : 329–38.
  33. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94 : 193–204.
  34. Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 2000; 297 : 1183–94.
  35. Belmokhtar CA, Torriglia A, Counis MF, Courtois Y, Jacquemin-Sablon A, Segal-Bendirdjian E. Nuclear translocation of a leukocyte elastase inhibitor/elastase complex during staurosporine-induced apoptosis: role in the generation of nuclear L-DNase II activity. Exp Cell Res 2000; 254 : 99–109.
  36. Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 1999; 274 : 32699–703.
  37. Altairac S, Chaudun E, Courtois Y, Torriglia A. Elastase is not required for L-DNase II activation during apoptosis in developing neural retina. Neurosci Lett 2001; 303 : 41–4.
  38. Dubin A, Travis J, Enghild JJ, Potempa J. Equine leukocyte elastase inhibitor. Primary structure and identification as a thymosin-binding protein. J Biol Chem 1992; 267 : 6576–83.
  39. Hood JK, Silver PA. In or out? regulating nuclear import. Curr Opin Cell Biol 1999; 11 : 241–7
  40. Sun YJ, Chou CC, Chen WS, Wu RT, Meng M, Hsiao The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc Natl Acad Sci USA 1999; 96 : 5412–7.
  41. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999; 285 : 1926–8.
  42. Proceedings of the second International Symposium on the structure and biology of the serpins. Cambridge, UK, juin 1999 (
  43. Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 1988; 336 : 257–8.
  44. Seralini GE. A new role for corticoid binding globulin (CBG), member of Serpin superfamily. CR Seances Soc Biol Fil 1991; 185 : 500–9.
  45. Stein PE, Tewkesbury DA, Carrell RW. Ovalbumin and angiotensinogen lack serpin S-R conformational change. Biochem J 1989; 262 : 103–7.
  46. Naidoo N, Cooperman BS, Wang Z, Liu X, Rubin H. Identification of lysines within alpha 1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements. J Biol Chem 1995; 270 : 14548–55.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.