Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 1, Janvier 2002
Page(s) 111 - 120
Section Forum : Hypothèses Et Débats
DOI https://doi.org/10.1051/medsci/2002181111
Publié en ligne 15 janvier 2002
  1. Gettins GW, Patston A, Olson T. Serpins: structure, function and biology. Austin : R.G. Landes Company, 1996 : 198 p. [Google Scholar]
  2. Salzet M, Vieau D, Stefano GB. Serpins: an evolutionarily conserved survival strategy. Immunol Today 1999; 20 : 541–4. [Google Scholar]
  3. Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 2001; 1535 : 221–35. [Google Scholar]
  4. Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353 : 576–8. [Google Scholar]
  5. Korpula-Mastalerz R, Dubin A. The intracellular serpin family. Acta Biochem Pol 1996; 43 : 419–29. [Google Scholar]
  6. Whisstock J, Skinner R, Lesk AM. An atlas of serpin conformations. Trends Biochem Sci 1998; 23 : 63–7. [Google Scholar]
  7. Wright HT. The structural puzzle of how serpin serine proteinase inhibitors work. Bioessays 1996; 18 : 453–64. [Google Scholar]
  8. Huntington JA, Read JR, Carell RR. Structure of a serpineprotease complex shows inhibition by deformation. Nature 2000; 407 : 923–6. [Google Scholar]
  9. Torriglia A, Perani P, Brossas JY, et al. L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin, leucocyte elastase inhibitor. Mol Cell Biol 1998; 18 : 3612–9. [Google Scholar]
  10. Torriglia A, Perani P, Courtois Y L-DNase II: un nouveau maillon dans les voies de l’apoptose. Med Sci 1999; 15 : 253. [Google Scholar]
  11. Torriglia A, Perani P, Brossas JY, et al. A caspase-Independent cell clearance program: the LEI/L-Dnase II pathway. Ann NY Acad Sci 2000; 926 : 192–203. [Google Scholar]
  12. Bauman U, Bode W, Huber R, Travis, J, Potempa J. Crystal structure of cleaved equine leukocyte elastase inhibitor determined at 1.95 A resolution. J Mol Biol 1992; 226 : 1207–18. [Google Scholar]
  13. Gite S, Reddy G, Shankar V. Active-site characterization of S1 nuclease. II. Involvement of histidine in catalysis. Biochem J 1992; 288 : 571–5. [Google Scholar]
  14. Ito K, Akiyama D, Minamiura N. Evidence for an essential histidine residue on active site of human urinary DNase I: carboxymethylation and carbethoxylation. Arch Biochem Biophys 1994; 313 : 126–30. [Google Scholar]
  15. Garinot-Schneider C, Pommer AJ, Moore GR, Kleanthous C, James R. Identification of putative active site residues in the DNase domain of colicine E9 by random mutagenesis.J Mol Biol 1996; 260 : 731–42. [Google Scholar]
  16. Warren MA, Evans SJ, Connoly B. Effects of nonconservative changes to tyrosine 76, a key DNA binding residue of DNase I, on phosphodiester bond cleavage and DNA hydrolysis selectivity. Prot Eng 1997; 10 : 279–83. [Google Scholar]
  17. Ho TY, Wu SL, Hsiang CH, Chang TJ, Hsiang CY. Identification of a DNA-binding domain and an activesite residue of pseudorabies virus DNase. Biochem J 2000; 346 : 441–5 [Google Scholar]
  18. Sakahira H, Takemura Y, Nagata S. Enzymatic active site of caspase-activated DNase (CAD) and its inhibition by inhibitor of CAD. Arch Biochem Biophys 2001; 388 : 91–9. [Google Scholar]
  19. Wittschieben J, Petersen BO, Shuman S. Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease. Nucleic Acids Res 1998; 26 : 490–6. [Google Scholar]
  20. Liao TH.The subunit structure and active site sequence of porcine spleen deoxyribonuclease.j Biol Chem 1985; 260 : 10708–13. [Google Scholar]
  21. Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA. Structure and function of the multifunctional DNArepair enzyme exonuclease III. Nature 1995; 374 : 381–6. [Google Scholar]
  22. Giraud-Panis MJ, Lilley DM.T4 endonuclease VII. Importance of a histidine-aspartate cluster within the zinc-binding domain. J Biol Chem 1996; 271 : 33148–55. [Google Scholar]
  23. Baker CP, Baron WF, Henzel WJ, Spencer SA. Molecular cloning and characterization of human and murine DNase II. Gene 1998; 215 : 281–9. [Google Scholar]
  24. Lyon CJ, Evans CJ, Bill BR, Otsuka AJ, Aguileraz RJ. The C. Elegans apoptotic nuclease NUC 1 is related in sequence and activity to mammalian DNase II. Gene 2000; 252 : 147–54. [Google Scholar]
  25. Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Stucture Fold Des 1999; 7 : 91–102. [Google Scholar]
  26. Pan CQ, Ulmer JS, Herzka A, Lazarus RA.Mutational analysis of human DNase I at the DNA binding interface: implications for DNA recognition, catalysis, and metal ion dependence. Protein Sci 1998; 7 : 628–36. [Google Scholar]
  27. Richards FM, Wyckoff H. Bovine pancreatic ribonuclease. In : Boyer PD,ed. The enzymes, vol. 4, 3rd ed. New York : Academic Press, 1971 : 647–806. [Google Scholar]
  28. Gorlich D. Nuclear protein import. Curr Opin Cell Biol 1997; 9 : 412–9. [Google Scholar]
  29. Moroianu J. Nuclear import and export pathways.J Cell Biochem 1999; suppl 32-33: 76–83. [Google Scholar]
  30. Mattaj IW, Conti E. Snail mail to the nucleus. Nature 1999; 399 : 208–10. [Google Scholar]
  31. Jans DA, Chan CK, Huebner S. Signals mediating nuclear targetting and their regulation: application in drug delivery. Med Res Rev 1998; 18 : 189–223. [Google Scholar]
  32. Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signal by karyopherin alpha. Structure Fold Des 2000; 8 : 329–38. [Google Scholar]
  33. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94 : 193–204. [Google Scholar]
  34. Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 2000; 297 : 1183–94. [Google Scholar]
  35. Belmokhtar CA, Torriglia A, Counis MF, Courtois Y, Jacquemin-Sablon A, Segal-Bendirdjian E. Nuclear translocation of a leukocyte elastase inhibitor/elastase complex during staurosporine-induced apoptosis: role in the generation of nuclear L-DNase II activity. Exp Cell Res 2000; 254 : 99–109. [Google Scholar]
  36. Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 1999; 274 : 32699–703. [Google Scholar]
  37. Altairac S, Chaudun E, Courtois Y, Torriglia A. Elastase is not required for L-DNase II activation during apoptosis in developing neural retina. Neurosci Lett 2001; 303 : 41–4. [Google Scholar]
  38. Dubin A, Travis J, Enghild JJ, Potempa J. Equine leukocyte elastase inhibitor. Primary structure and identification as a thymosin-binding protein. J Biol Chem 1992; 267 : 6576–83. [Google Scholar]
  39. Hood JK, Silver PA. In or out? regulating nuclear import. Curr Opin Cell Biol 1999; 11 : 241–7 [Google Scholar]
  40. Sun YJ, Chou CC, Chen WS, Wu RT, Meng M, Hsiao The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc Natl Acad Sci USA 1999; 96 : 5412–7. [Google Scholar]
  41. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999; 285 : 1926–8. [Google Scholar]
  42. Proceedings of the second International Symposium on the structure and biology of the serpins. Cambridge, UK, juin 1999 (http://smoke-room.cimr.cam.ac.uk). [Google Scholar]
  43. Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 1988; 336 : 257–8. [Google Scholar]
  44. Seralini GE. A new role for corticoid binding globulin (CBG), member of Serpin superfamily. CR Seances Soc Biol Fil 1991; 185 : 500–9. [Google Scholar]
  45. Stein PE, Tewkesbury DA, Carrell RW. Ovalbumin and angiotensinogen lack serpin S-R conformational change. Biochem J 1989; 262 : 103–7. [Google Scholar]
  46. Naidoo N, Cooperman BS, Wang Z, Liu X, Rubin H. Identification of lysines within alpha 1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements. J Biol Chem 1995; 270 : 14548–55. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.