Accès gratuit
Med Sci (Paris)
Volume 17, Numéro 12, Décembre 2001
Page(s) 1281 - 1288
Section Articles de Synthèse
Publié en ligne 15 décembre 2001
  1. El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 42–6.
  2. Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 36–41.
  3. Massari M, Murre C. Helix-loop-helix proteins : regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20 : 429–40.
  4. Bourgeois P, Bolcato-Bellemin AL, Danse JM, et al. The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum Mol Genet 1998; 7 : 945–57.
  5. El Ghouzzi V, Lajeunie E, Le Merrer M, et al. Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome. Eur J Hum Genet 1999; 7 : 27–33.
  6. Gripp KW, Zackai EH, Stolle CA. Mutations in the human TWIST gene. Hum Mutat 2000; 15 : 150–5.
  7. Johnson D, Horsley SW, Moloney DM, et al. A comprehensive screen for TWIST mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1. Am J Hum Genet 1998; 63 : 1282–93.
  8. El Ghouzzi V, Legeai-Mallet L, Aresta S, et al. Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 2000; 9 : 813–9.
  9. El Ghouzzi V, Legeai-Mallet L, Benoist C, et al. Mutations in the basic domain and the loop-helix II junction of TWIST abolish DNA binding in Saethre-Chotzen syndrome. FEBS Lett 2001; 492 : 112–8.
  10. Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 2001; 107 : 1153–61.
  11. Maquat LE, Carmichael GG. Quality control of mRNA function. Cell. 2001; 104 : 173–6.
  12. Johnson D, Iseki S, Wilkie AO, Morriss-Kay GM. Expression patterns of Twist and Fgfr1, -2 and -3 in the developing mouse coronal suture suggest a key role for twist in suture initiation and biogenesis. Mech Dev 2000; 91 : 341–5.
  13. Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation-and proliferation-related roles in the developing mouse skull vault. Development 1999; 126 : 5611–20.
  14. Rice DP, Aberg T, Chan Y, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127 : 1845–55.
  15. Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 1998; 77 77 : 19–30.
  16. Molteni A, Modrowski D, Hott M, Marie PJ. Differential expression of fibroblast growth factor receptor-1, -2, and -3 and syndecan-1, -2, and -4 in neonatal rat mandibular condyle and calvaria during osteogenic differentiation in vitro. Bone 1999; 24 : 337–47.
  17. Shishido E, Higashijima S, Emori Y, Saigo K. Two FGF-receptor homologues of Drosophila : one is expressed in mesodermal primordium in early embryos. Development 1993; 117 : 751–61.
  18. El Ghouzzi V, Quillet R, Stoetzel C, Munnich A, Bonaventure J, Perrin-Schmitt F. Analysis of the murine model of the Saethre-Chotzen syndrome suggests a functional relationship between TWIST and FGFR2. Bone 2001; 28 (suppl) : SC11W.
  19. Kophengnavong T, Michnowicz JE, Blackwell TK. Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol Cell Biol 2000; 20 : 261–72.
  20. Hebrok M, Wertz K, Füchtbauer EM Mtwist is an inhibitor of muscle differentiation. Dev Biol 1994; 165 : 537–44.
  21. Hamamori Y, Wu HY, Sartorelli V, Kedes L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 1997; 17 : 6563–73.
  22. Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA. TWIST, a basic helix-loop-helix transcription factor can regulate the human osteogenic lineage. J Cell Biochem. 1999; 75 : 566–77.
  23. Maestro R, Dei Tos AP, Hamamori Y, et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 1999; 13 : 2207–17.
  24. Wilkie AO, Tang Z, Elanko N, et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 2000; 24 : 387–90.
  25. Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000; 24 : 391–5.
  26. Wuyts W, Cleiren E, Homfray T, Rasore-Quartino A, Vanhoenacker F, Van Hul W. The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 168500). J Med Genet 2000; 37 : 916–20.
  27. Mavrogiannis LA, Antonopoulou I, Baxova A, et al. Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nat Genet. 2001; 27 : 17–8.
  28. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89 : 773–9.
  29. Yousfi M, Marie PJ, Lasmoles F. Deletion of the basic helix-loop-helix domain in TWIST increases apoptosis in osteoblasts in the Saethre-Chotzen craniosynostosis. ASBMR, 22nd annual meeting, 2000. Toronto, Canada : ASBMR Abstract book, 2000.
  30. Sadler TW. Langman’s medical embryology, 7th ed. Baltimore (USA) : Lippincott-William and Wilkins, 1995.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.