Accès gratuit
Numéro
Med Sci (Paris)
Volume 17, Numéro 12, Décembre 2001
Page(s) 1281 - 1288
Section Articles de Synthèse
DOI http://dx.doi.org/10.1051/medsci/200117121281
Publié en ligne 15 décembre 2001
  1. El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 42–6.
  2. Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 36–41.
  3. Massari M, Murre C. Helix-loop-helix proteins : regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20 : 429–40.
  4. Bourgeois P, Bolcato-Bellemin AL, Danse JM, et al. The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum Mol Genet 1998; 7 : 945–57.
  5. El Ghouzzi V, Lajeunie E, Le Merrer M, et al. Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome. Eur J Hum Genet 1999; 7 : 27–33.
  6. Gripp KW, Zackai EH, Stolle CA. Mutations in the human TWIST gene. Hum Mutat 2000; 15 : 150–5.
  7. Johnson D, Horsley SW, Moloney DM, et al. A comprehensive screen for TWIST mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1. Am J Hum Genet 1998; 63 : 1282–93.
  8. El Ghouzzi V, Legeai-Mallet L, Aresta S, et al. Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 2000; 9 : 813–9.
  9. El Ghouzzi V, Legeai-Mallet L, Benoist C, et al. Mutations in the basic domain and the loop-helix II junction of TWIST abolish DNA binding in Saethre-Chotzen syndrome. FEBS Lett 2001; 492 : 112–8.
  10. Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 2001; 107 : 1153–61.
  11. Maquat LE, Carmichael GG. Quality control of mRNA function. Cell. 2001; 104 : 173–6.
  12. Johnson D, Iseki S, Wilkie AO, Morriss-Kay GM. Expression patterns of Twist and Fgfr1, -2 and -3 in the developing mouse coronal suture suggest a key role for twist in suture initiation and biogenesis. Mech Dev 2000; 91 : 341–5.
  13. Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation-and proliferation-related roles in the developing mouse skull vault. Development 1999; 126 : 5611–20.
  14. Rice DP, Aberg T, Chan Y, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127 : 1845–55.
  15. Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 1998; 77 77 : 19–30.
  16. Molteni A, Modrowski D, Hott M, Marie PJ. Differential expression of fibroblast growth factor receptor-1, -2, and -3 and syndecan-1, -2, and -4 in neonatal rat mandibular condyle and calvaria during osteogenic differentiation in vitro. Bone 1999; 24 : 337–47.
  17. Shishido E, Higashijima S, Emori Y, Saigo K. Two FGF-receptor homologues of Drosophila : one is expressed in mesodermal primordium in early embryos. Development 1993; 117 : 751–61.
  18. El Ghouzzi V, Quillet R, Stoetzel C, Munnich A, Bonaventure J, Perrin-Schmitt F. Analysis of the murine model of the Saethre-Chotzen syndrome suggests a functional relationship between TWIST and FGFR2. Bone 2001; 28 (suppl) : SC11W.
  19. Kophengnavong T, Michnowicz JE, Blackwell TK. Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol Cell Biol 2000; 20 : 261–72.
  20. Hebrok M, Wertz K, Füchtbauer EM Mtwist is an inhibitor of muscle differentiation. Dev Biol 1994; 165 : 537–44.
  21. Hamamori Y, Wu HY, Sartorelli V, Kedes L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 1997; 17 : 6563–73.
  22. Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA. TWIST, a basic helix-loop-helix transcription factor can regulate the human osteogenic lineage. J Cell Biochem. 1999; 75 : 566–77.
  23. Maestro R, Dei Tos AP, Hamamori Y, et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 1999; 13 : 2207–17.
  24. Wilkie AO, Tang Z, Elanko N, et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 2000; 24 : 387–90.
  25. Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000; 24 : 391–5.
  26. Wuyts W, Cleiren E, Homfray T, Rasore-Quartino A, Vanhoenacker F, Van Hul W. The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 168500). J Med Genet 2000; 37 : 916–20.
  27. Mavrogiannis LA, Antonopoulou I, Baxova A, et al. Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nat Genet. 2001; 27 : 17–8.
  28. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89 : 773–9.
  29. Yousfi M, Marie PJ, Lasmoles F. Deletion of the basic helix-loop-helix domain in TWIST increases apoptosis in osteoblasts in the Saethre-Chotzen craniosynostosis. ASBMR, 22nd annual meeting, 2000. Toronto, Canada : ASBMR Abstract book, 2000.
  30. Sadler TW. Langman’s medical embryology, 7th ed. Baltimore (USA) : Lippincott-William and Wilkins, 1995.