Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 11, Novembre 2017
|
|
---|---|---|
Page(s) | 984 - 990 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173311016 | |
Publié en ligne | 4 décembre 2017 |
- Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol 2014 ; 16 : 1004–1013. [CrossRef] [PubMed] [Google Scholar]
- Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Transl Med 2014 ; 6 : 266. [CrossRef] [PubMed] [Google Scholar]
- Al-Asmakh M, Anuar F, Zadjali F, et al. Gut microbial communities modulating brain development and function. Gut Microbes 2012 ; 3 : 366–373. [CrossRef] [PubMed] [Google Scholar]
- Janssen AW, Kersten S. The role of the gut microbiota in metabolic health. FASEB J 2015 ; 29 : 3111–3123. [CrossRef] [PubMed] [Google Scholar]
- Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med 2016 ; 89 : 397–422. [PubMed] [Google Scholar]
- Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002 ; 347 : 911–920. [Google Scholar]
- Grosdemange A. Impact du microbiote intestinal sur le système immunitaire de l’enfant. Thèse. Université de Lorraine, Faculté de pharmacie, 2014. [Google Scholar]
- Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 : 511–21. [CrossRef] [PubMed] [Google Scholar]
- Blaser MJ. Missing microbes. How the overuse of antibiotics is fueling our modern plagues. New York : Henry Holt and Company, 2014 : 273. [Google Scholar]
- Warinner C, Speller C, Collins MJ, Lewis CM Jr. Ancient human microbiomes. J Hum Evol 2015 ; 79 : 125–136. [CrossRef] [PubMed] [Google Scholar]
- Hyde ER, Haarmann DP, Petrosino JF, et al. Initial insights into bacterial succession during human decomposition. Int J Legal Med 2014 ; 129 : 661–671. [CrossRef] [PubMed] [Google Scholar]
- Hyde ER, Haarmann DP, Lynne AM, et al. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 2013 ; 8 : e77733. [CrossRef] [PubMed] [Google Scholar]
- Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011 ; 473 : 174–180. [CrossRef] [PubMed] [Google Scholar]
- Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
- Dutilh BE, Cassman N, McNair K, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Comm 2014 ; 5 : 4498. [CrossRef] [Google Scholar]
- Ziesemer KA, Mann AE, Sankaranarayanan K, et al. Intrinsic challenges in ancient microbiome reconstruction using 16s rRNA gene amplification. Sci Rep 2015 ; 5 : 16498. [CrossRef] [PubMed] [Google Scholar]
- Weyrich LS, Duchene S, Soubrier J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 2017 ; 544 : 357–361. [CrossRef] [PubMed] [Google Scholar]
- Cano RJ, Rivera-Perez J, Toranzos GA, et al. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 2014 ; 9 : e106833. [CrossRef] [PubMed] [Google Scholar]
- Santiago-Rodriguez TM, Fornaciari G, Luciani S et al. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol Lett 2016; 363 : fnv219. [CrossRef] [PubMed] [Google Scholar]
- Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Taxonomic and predicted metabolic profiles of the human gut micro biome in pre-Columbian mummies. FEMS Microbiol Ecol 2016; 92 : fiw182. [CrossRef] [PubMed] [Google Scholar]
- Benmoussa N, Charpentier C, Mariaggi AA, et al. HPV 16 in squamous cell carcinoma of 19th century tonsils. Lancet Oncol 2016 ; 17 : 477–478. [Google Scholar]
- Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Gut microbiome of an 11th century AD pre-Columbian Andean mummy. PLoS One 2015 ; 10 : e0138135. [CrossRef] [PubMed] [Google Scholar]
- Perry JA, Wright GD. The antibiotic resistance mobilome: searching for the link between environment and clinic. Front Microbiol 2013 ; 4 : 138. [CrossRef] [PubMed] [Google Scholar]
- Obregon-Tito A, Tito RY, Metcalf J, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015 ; 6 : 6505. [CrossRef] [PubMed] [Google Scholar]
- Gomez A, Petrzelkova KJ, Burns MB, et al. Gut microbiome of coexisting baAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 2016 ; 14 : 2142–2153. [CrossRef] [PubMed] [Google Scholar]
- Lin A, Bik EM, Costello EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One 2013 ; 8 : e53838. [CrossRef] [PubMed] [Google Scholar]
- Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012 ; 486 : 222–227. [CrossRef] [PubMed] [Google Scholar]
- Martinez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep 2015 ; 11 : 527–538. [CrossRef] [PubMed] [Google Scholar]
- De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010 ; 107 : 14691–14696. [Google Scholar]
- Rampelli S, Schnorr SL, Consolandi C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol 2015 ; 25 : 1682–1693. [CrossRef] [PubMed] [Google Scholar]
- Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commum 2014 ; 5 : 3654. [CrossRef] [Google Scholar]
- Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Sci Adv 2015; 1 : pii: e1500183. [Google Scholar]
- Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and industrial revolutions. Nat Genet 2013 ; 45 : 450–455. [Google Scholar]
- Parkhill J, Wren BW, Thomson NR, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 2001 ; 413 : 523–527. [CrossRef] [PubMed] [Google Scholar]
- Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science 2000 ; 289 : 1139. [Google Scholar]
- Solozzo C, Fitzhugh WW, Rolando C, Tokarski C. Identification of protein remains in archaeological potsherds by proteomics. Anal Chem 2008 ; 80 : 4590–4597. [CrossRef] [PubMed] [Google Scholar]
- Wiktorowicz CJ, Arnold B, Wiktorowiczet JE, et al. Hemorrhagic fever virus, human blood, and tissues in Iron Ages mortuary vessels. J Archaeol Sci 2017 ; 78 : 29–39. [Google Scholar]
- Charlier P, Huynh-Charlier I, Munoz O, et al. The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Leg Med (Tokyo) 2010; 12 : 163–71. [CrossRef] [PubMed] [Google Scholar]
- Charlier P, Abadie I, Cavard D, Brun L. Ancient calculus egg. Br Dent J 2013 : 489–490. [Google Scholar]
- Charlier P, Bouchet F, Weil R, Bonnet B. Schistosomiasis in the mummified viscera of Saint-Louis (1270 AD). Forensic Sci Med Pathol 2015 ; 12 : 113–114. [Google Scholar]
- Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut 2017 ; 222 : 1–9. [Google Scholar]
- Lange K, Buerger M, Stallmach A, Bruns T. Effects of antibiotics on gut microbiota. Dig Dis Sci 2016 ; 34 : 260–268. [Google Scholar]
- Müller A, Hussein K. Meta-analysis of teeth from European populations before and after the 18th century reveals a shift towards increased prevalence of caries and tooth loss. Arch Oral Biol 2017 ; 73 : 7–15. [CrossRef] [PubMed] [Google Scholar]
- Charlier P. Human oral microbiome crisis at the end of 18th c.? J Brief Ideas 2017; 26 Mar. http://beta.briefideas.org/ideas/3e688fbc491d6d2db77b4035c5ad5b2c. [Google Scholar]
- Rascovan N, Drancourt M, Desnues C. Des génomes anciens de Yersinia pestis pour comprendre l’origine et la dissémination des épidémies de peste historiques. Med Sci (Paris) 2016 ; 32 : 681–683. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Aubernon C, Hédouin V, Charabidzé D. Les larves de diptères nécrophages en entomologie médico-légale : une histoire de température. Med Sci (Paris) 2017 ; 33 : 779–783. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Weissenbach J, Sghir A. Microbiotes et métagénoique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.