Open Access
Issue
Med Sci (Paris)
Volume 41, Octobre 2025
40 ans de médecine/sciences
Page(s) 18 - 29
Section Infectiologie
DOI https://doi.org/10.1051/medsci/2025127
Published online 10 October 2025
  1. Sansonetti PJ. La grippe, mère des pandémies. Microbes sans frontières. Paris, France : Odile Jacob, 2024 : 448 p. [Google Scholar]
  2. Gilgenkrantz H. Anthropocène. Med Sci (Paris) 2024 ; 40 : 671. [Google Scholar]
  3. Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999 ; 354 : 1257–9. [Google Scholar]
  4. Sansonetti PJ. Microbes sans frontière. Paris, France. : Odile Jacob, 2024 : 448p. [Google Scholar]
  5. Galmiche S, Coustaury C, Charniga K, et al. Patterns and drivers of excess mortality during the COVID-19 pandemic in 13 Western European countries. BMC Glob Public Health 2024 ; 2 : 78. [Google Scholar]
  6. Cauchemez S, Cossu G, Delzenne N, et al. Standing the test of COVID-19: charting the new frontiers of medicine. Frontiers in Science 2024 ; Volume 2 - 2024. [Google Scholar]
  7. Bosetti P, Tran Kiem C, Andronico A, et al. Epidemiology and control of SARS-CoV-2 epidemics in partially vaccinated populations: a modeling study applied to France. BMC Med 2022 ; 20 : 33. [Google Scholar]
  8. Hsieh YH, Lee JY, Chang HL. SARS epidemiology modeling. Emerg Infect Dis 2004 ; 10 : 1165–7 ; author reply 7-8. [Google Scholar]
  9. Watson OJ, Barnsley G, Toor J, et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis 2022 ; 22 : 1293–302. [Google Scholar]
  10. Day T, Gandon S, Lion S, Otto SP. On the evolutionary epidemiology of SARS-CoV-2. Curr Biol 2020 ; 30 : R849–R57. [Google Scholar]
  11. Casadevall A. The mRNA vaccine revolution is the dividend from decades of basic science research. J Clin Invest 2021 ; 131. [Google Scholar]
  12. Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961 ; 190 : 576–81. [Google Scholar]
  13. Gros F, Hiatt H, Gilbert W, et al. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature 1961 ; 190 : 581–5. [Google Scholar]
  14. Kariko K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008 ; 16 : 1833–40. [CrossRef] [PubMed] [Google Scholar]
  15. Dieu-Nosjean MC, Teillaud JL. Prix Nobel de physiologie ou medecine 2023 : Katalin Kariko et Drew Weissman - Une revolution vaccinale portee par la recherche fondamentale en immunologie et en biologie moleculaire. Med Sci (Paris) 2024 ; 40 : 186–91. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Alameh MG, Tombacz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021 ; 54 : 2877–92 e7. [CrossRef] [PubMed] [Google Scholar]
  17. Altmann DM, Boyton RJ. COVID-19 vaccination: The road ahead. Science 2022 ; 375 : 1127–32. [Google Scholar]
  18. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018 ; 17 : 261–79. [CrossRef] [PubMed] [Google Scholar]
  19. Rappuoli R, De Gregorio E, Del Giudice G, et al. Vaccinology in the post-COVID-19 era. Proc Natl Acad Sci U S A 2021 ; 118. [Google Scholar]
  20. Du L, Zhao G, He Y, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2007 ; 25 : 2832–8. [Google Scholar]
  21. Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 2001 ; 19 : 2688–91. [Google Scholar]
  22. Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 2007 ; 18 : 523–8. [Google Scholar]
  23. Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat Med 2019 ; 25 : 547–53. [Google Scholar]
  24. Chavda VP, Prajapati R, Lathigara D, et al. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022 ; 22 : 763–80. [Google Scholar]
  25. Kuitunen I, Backman K, Gardstrom E, Renko M. Monoclonal antibody therapies in respiratory syncytial virus prophylaxis-An umbrella review. Pediatr Pulmonol 2024 ; 59 : 2374–80. [Google Scholar]
  26. Gerke CE, Pulverer B, Sansonetti PJ. COVID-19 vaccination, time for a second breath? EMBO Mol Med 2022 ; 14 : e15810. [Google Scholar]
  27. Locht C. Pertussis before, during and after Covid-19. EMBO Mol Med 2025 ; 17 : 594–8. [Google Scholar]
  28. Terreri S, Piano Mortari E, Vinci MR, et al. Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections. Cell Host Microbe 2022 ; 30 : 400–8 e4. [Google Scholar]
  29. Roltgen K, Nielsen SCA, Silva O, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022 ; 185 : 1025–40 e14. [Google Scholar]
  30. Asano T, Boisson B, Onodi F, et al. X-linked recessive TLR7 deficiency in ~1 % of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021 ; 6. [Google Scholar]
  31. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020 ; 370. [Google Scholar]
  32. Sansonetti PJ. Évolution des écosystèmes microbiens et des risque sanitaires urbains sous les effets du dérèglement climatique et de l’anthropocène. In : Boucheron PSP, ed. La ville du futur. Paris : Editions du Collège de France, 2025. [Google Scholar]
  33. Asadgol Z, Badirzadeh A, Niazi S, et al. How climate change can affect cholera incidence and prevalence? A systematic review. Environ Sci Pollut Res Int 2020 ; 27 : 34906–26. [Google Scholar]
  34. Ibekwe AM, Murinda SE. Linking Microbial Community Composition in Treated Wastewater with Water Quality in Distribution Systems and Subsequent Health Effects. Microorganisms 2019 ; 7. [Google Scholar]
  35. Fouladkhah AC, Thompson B, Camp JS. The Threat of Antibiotic Resistance in Changing Climate. Microorganisms 2020 ; 8. [Google Scholar]
  36. Magniont C, Coutand M, Bertron A, et al. A new test method to assess the bacterial deterioration of cementitious materials. Cement and Concrete Research, 2011 ; 41 : 429–38. [Google Scholar]
  37. Calero Preciado C, Soria-Carrasco V, Boxall J, Douterelo I. Climate change and management of biofilms within drinking water distribution systems. Frontiers in Environmental Science 2022 ; Volume 10 - 2022. [Google Scholar]
  38. Danko D, Bezdan D, Afshin EE, et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021 ; 184 : 3376–93 e17. [Google Scholar]
  39. Fang Z, Guo W, Zhang J, Lou X. Influence of Heat Events on the Composition of Airborne Bacterial Communities in Urban Ecosystems. Int J Environ Res Public Health 2018 ; 15. [Google Scholar]
  40. Hassell JM, Ward MJ, Muloi D, et al. Deterministic processes structure bacterial genetic communities across an urban landscape. Nat Commun 2019 ; 10 : 2643. [Google Scholar]
  41. Franco-Paredes C, Rodriguez-Morales AJ, Henao-Martinez AF, et al. The growing threat of wild poliovirus 1 and vaccine-derived cases in the COVID-19 era. Lancet Infect Dis 2022 ; 22 : 1412–4. [Google Scholar]
  42. Cenciarelli O, Pietropaoli S, Malizia A, et al. Ebola virus disease 2013-2014 outbreak in west Africa: an analysis of the epidemic spread and response. Int J Microbiol 2015 ; 2015 : 769121. [Google Scholar]
  43. Rollo IM, Williamson J, Plackett RL. Acquired resistance to penicillin and to neoarsphenamine in Spirochaeta recurrentis. Br J Pharmacol Chemother 1952 ; 7 : 33–41. [Google Scholar]
  44. Watanabe T, Lyang KW. Episome-mediated transfer of drug resistance in Enterobacteriaceae. V. Spontaneous segregation and recombination of resistance factors in Salmonella typhimurium. J Bacteriol 1962 ; 84 : 422–30. [Google Scholar]
  45. Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. Nature 1940 ; 146 : 837. [Google Scholar]
  46. Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015 ; 13 : 42–51. [Google Scholar]
  47. Despotovic M, de Nies L, Busi SB, Wilmes P. Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 2023 ; 73 : 102291. [Google Scholar]
  48. Watanabe T, Ogata C, Sato S. Episome-Mediated Transfer of Drug Resistance in Enterobacteriaceae. 8. Six-Drug-Resistance R Factor. J Bacteriol 1964 ; 88 : 922–8. [Google Scholar]
  49. Falkow S. Infectious Multiple Drug Resistance. London, England : Pion Ltd, 1975 : 300p. [Google Scholar]
  50. Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol 1993 ; 9 : 635–43. [Google Scholar]
  51. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011 ; 35 : 790–819. [Google Scholar]
  52. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 2006 ; 4 : 608–20. [Google Scholar]
  53. Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio 2024 ; 14 : 13–22. [Google Scholar]
  54. Gillings MR, Labbate M, Sajjad A, et al. Mobilization of a Tn402-like class 1 integron with a novel cassette array via flanking miniature inverted-repeat transposable element-like structures. Appl Environ Microbiol 2009 ; 75 : 6002–4. [Google Scholar]
  55. Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009 ; 53 : 5046–54. [Google Scholar]
  56. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012 ; 18 : 263–72. [Google Scholar]
  57. Alglave L, Faure K, Mullie C. Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review. Microorganisms 2025 ; 13. [Google Scholar]
  58. Osborn AM, Bruce KD, Strike P, Ritchie DA. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 1997 ; 19 : 239–62. [Google Scholar]
  59. Beloin C, Renard S, Ghigo JM, Lebeaux D. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 2014 ; 18 : 61–8. [Google Scholar]
  60. Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 2019 ; 17 : 441–8. [Google Scholar]
  61. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013 ; 3 : a010306. [Google Scholar]
  62. Dufour N, Debarbieux L, Fromentin M, Ricard JD. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages. Crit Care Med 2015 ; 43 : e190–8. [Google Scholar]
  63. Clegg J, Soldaini E, McLoughlin RM, et al. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021 ; 12 : 705360. [Google Scholar]
  64. Crum-Cianflone NF, Sullivan E, Ballon-Landa G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol 2015 ; 53 : 1986–9. [Google Scholar]
  65. Sansonetti PJ, Dore J. Le microbiome humain a l’epreuve de l’anthropocene - De la correlation a la causalite et a l’intervention. Med Sci (Paris) 2024 ; 40 : 757–65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  66. Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014 ; 32 : 1146–50. [CrossRef] [PubMed] [Google Scholar]
  67. Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 2017 ; 37 : 155–60. [Google Scholar]
  68. Tara Ocean F, Tara O, European Molecular Biology L, European Marine Biological Resource Centre - European Research Infrastructure C. Priorities for ocean microbiome research. Nat Microbiol 2022 ; 7 : 937–47. [Google Scholar]
  69. Gadiya Y, Genilloud O, Bilitewski U, et al. Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning. J Chem Inf Model 2025 ; 65 : 2416–31. [Google Scholar]
  70. Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 2010 ; 44 : 580–7. [Google Scholar]
  71. Kraemer SA, Ramachandran A, Perron GG. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019 ; 7. [Google Scholar]
  72. Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 2015 ; 112 : 5649–54. [CrossRef] [PubMed] [Google Scholar]
  73. Wistrand-Yuen E, Knopp M, Hjort K, et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018 ; 9 : 1599. [Google Scholar]
  74. Blaser MJ. Missing microbes. How killing bactria creates modern plagues. : Oneworld Publications Ltd, 2025. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.