

> Au cours du développement embryonnaire chez les vertébrés, la migration des mélanocytes et de leurs précurseurs, les mélanoblastes, le long de l'axe dorso-latéral et le franchissement de la membrane basale séparant le derme de l'épiderme permettent leur localisation au niveau des zones interfolliculaires et folliculaires des poils. La transformation néoplasique convertit les mélanocytes en cellules de mélanome fortement invasives pouvant adopter deux modes de migration interconvertibles. Cette revue décrit comment les mutants naturels de souris, les modèles générés par ciblage génique et les systèmes de culture in vitro, ont permis l'identification des gènes, des voies de signalisation et des mécanismes qui régulent la migration des cellules normales et pathologiques du lignage mélanocytaire. <

La migration cellulaire est un processus complexe et hétérogène qui concerne l'ensemble des cellules nucléées au cours du développement embryonnaire. Elle est limitée une fois la différenciation terminale des cellules accomplie, mais peut être réactivée lors du processus d'invasion tumorale. Dans cette revue, nous nous intéresserons plus particulièrement à la migration des mélanocytes et de leurs précurseurs, les mélanoblastes, au cours du développement embryonnaire normal. Nous insisterons également sur les mécanismes cellulaires et moléculaires régissant la migration in vitro en système bi (2D) et tridimensionnel (3D). Enfin, nous aborderons l'aspect pathologique de la migration associée à l'invasion tumorale et à la formation de métastases par les cellules de mélanome.

Migration des mélanocytes au cours du développement normal

Les mélanocytes sont des cellules dendritiques mélanisées impliquées dans la pigmentation de nombreuses espèces animales [1] et, aussi, dans la couleur de la peau, des yeux, des poils et des cheveux chez l'homme.

m/s n° 3, vol. 29, mars 2013

DOI: 10.1051/medsci/2013293015

Migration des cellules du lignage mélanocytaire

Mélanie J. Domingues, Lionel Larue, Jacky Bonaventure

Institut Curie, CNRS UMR3347, Inserm U1021, Génétique du développement des mélanocytes, Centre de recherche, bâtiment 110, 91405 Orsay, France. lionel.larue@curie.fr

Ces cellules productrices de mélanine dérivent des cellules de la crête neurale (CCN). Il existe deux sous-populations de CCN qui, après prolifération, peuvent emprunter deux voies majeures de migration lors de leur développement (Figure 1). La voie dorso-ventrale sera à l'origine des cellules du système nerveux périphérique, et la voie dorso-latérale sera à l'origine des mélanocytes [2]. La compréhension des processus de migration des cellules pigmentaires a largement bénéficié des modèles animaux et, tout particulièrement, du modèle murin. Chez la souris, la spécification des CCN en mélanoblastes fondateurs intervient aux jours embryonnaires 8,5-9,5 (E8,5-E9,5) dans la région troncale de l'embryon. Les mélanoblastes fondateurs prolifèrent activement dans une région acellulaire, MSA (migrating staging area : aire de pause de migration), localisée entre l'épiderme, le tube neural et le somite. Au stade E10,5, tout en continuant à proliférer, les mélanoblastes précurseurs commencent leur migration à partir de la MSA entre les somites et l'ectoderme selon un gradient temporel rostrocaudal. Une partie des mélanoblastes migrants commence à franchir la lame basale séparant le derme de l'épiderme dès E11,5, et l'autre partie continue à migrer dorso-latéralement dans le derme jusqu'au stade E15,5, tout en continuant à franchir la basale [3]. En dépit d'une prolifération active dans le derme, le nombre de mélanoblastes reste constant. Ceci pourrait s'expliquer par une division cellulaire asymétrique donnant naissance à une cellule fille qui migrerait dans l'épiderme alors que l'autre resterait dans le derme [3]. La colonisation des follicules pileux débute à partir de £15,5. À la naissance des souris, les mélanocytes sont principalement présents dans l'épiderme des zones folliculaire et interfolliculaire. Ils disparaissent rapidement pour ne laisser place qu'aux mélanocytes folliculaires. Alors que les CCN migrant selon la voie dorso-ventrale ont longtemps été REVUES

Vignette (Photo © Inserm - Christine Baldeschi).

Figure 1. Spécification des mélanocytes à partir des cellules de crête neurale (CCN). Au stade E9, les CCN migrant le long de la voie dorso-latérale sont spécifiées et se différencient en mélanoblastes, puis en mélanocytes de la 1^{re} vague. Les CCN migrant selon la voie dorso-ventrale peuvent générer plusieurs types cellulaires, dont les précurseurs des cellules de Schwann qui migrent le long des nerfs périphériques innervant la peau. Certaines de ces cellules peuvent se détacher des nerfs pour générer les mélanocytes de la 2^e vague. Cette spécification a lieu au stade E12,5. Nous ne savons pas encore si ces mélanocytes résultent d'une dédifférenciation des précurseurs des cellules de Schwann ou dérivent de cellules souches bipotentes associées aux nerfs. TN : tube neural ; TEM : transition épithélio-mésenchymateuse ; M : mélanocyte ; K : kératinocyte.

considérées comme source d'un grand nombre de précurseurs, dont les cellules de Schwann et les neurones, une étude récente a montré que, chez le poulet et la souris, les cellules de Schwann seraient capables de se différencier en mélanocytes [4]. Ces cellules, dont l'apparition serait postérieure aux mélanocytes de la première vague (voie dorso-latérale), migreraient préférentiellement dans les membres en suivant les nerfs, et correspondraient aux mélanocytes de la deuxième vague (*Figure 1*). L'importance relative de cette deuxième vague est controversée en termes numérique et spatial.

Aspects génétiques et moléculaires de la migration au cours du développement

La compréhension des mécanismes moléculaires impliqués dans la migration des mélanoblastes au cours du développement chez les vertébrés s'appuie sur l'étude de différents modèles animaux : souris, poulet, poisson zèbre et xénope. Le modèle aviaire a largement contribué à l'étude des CCN et a permis de montrer l'importance de deux familles de protéines extrêmement versatiles, les intégrines et les cadhérines, non seulement dans le processus d'adhésion à la matrice extracellulaire, mais également au cours de la migration qui s'accompagne de

modifications de leur profil d'expression [5, 6]. Certains des gènes identifiés comme responsables de la migration chez la souris, tel le gène Kit, sont également impliqués dans ce phénomène chez le poisson-zèbre. Cependant. leur fonction diffère à cause de la complexité de la mélanogenèse chez les poissons ou les amphibiens qui repose sur l'existence d'au moins guatre types cellulaires (mélanoblastes, leucoblastes, xanthoblastes et iridoblastes) migrant selon des voies différentes et encore mal explorées [7]. Chez le poulet, le facteur de transcription FoxD3 régule la formation des mélanoblastes en réprimant la migration dorso-latérale des CCN. De même, le complexe éphrine-B/ ephrin B-récepteur réprime initialement la migration des CCN selon la voie dorso-latérale (après 12 jours de développement) mais, à partir du stade 18 jours, il stimule la migration des mélanoblastes [8]. Néanmoins, aucun mécanisme équivalent n'a été retrouvé ni chez le poisson-zèbre, ni chez la souris. Les travaux chez la souris ont largement bénéficié de l'existence de mutants

présentant un phénotype de taches blanches au niveau du pelage. Les mutants Microphthalmia (Mitf), dominant white spotting (Kit), Steel (Kitl), Piebald (Ednrb) et lethal spotting (Edn3) ont permis d'identifier les gènes et les protéines essentiels à la première étape de migration des mélanoblastes, qui suit leur délamination à partir du tube neural [1]. Ainsi, le ligand Edn3 (endothéline 3) produit par l'ectoderme se lie au récepteur Ednrb exprimé par les mélanoblastes. Le ligand Kitl produit dans le dermomyotome, le derme et le follicule pileux, se lie au récepteur à activité tyrosine kinase c-Kit exprimé par les mélanoblastes. Seuls les mélanoblastes exprimant le récepteur c-Kit et le facteur transcriptionnel Mitf (microphtalmiaassociated transcription factor) peuvent répondre aux signaux attractifs et répulsifs contrôlant la migration. Le produit du gène Mitf, et plus particulièrement l'isoforme M-Mitf, spécifique du lignage mélanocytaire, joue un rôle central dans les mélanoblastes/mélanocytes, non seulement en assurant leur spécification et leur survie, mais également en participant aux stades primaire (dorso-latéral) et secondaire (ventral) de la migration.

уитнѐзе 🚱 REVUES

Il n'est donc pas surprenant que des mutations spontanées de certains gènes régulateurs de l'expression de M-Mitf, incluant Sox10 (mutant dominant megacolon) et Pax3 (mutant Splotch), puissent produire un phénotype de taches blanches. Chez l'humain, des mutations de ces gènes sont à l'origine d'une série de maladies pigmentaires monogéniques. Ainsi, des mutations hétérozygotes de SOX10 sont responsables du syndrome de Waardenburg-Shah (WS4C), alors que celles de PAX 3 sont à l'origine du syndrome de Waardenburg de type 1 (WS1 ou WS3) aui se distingue du précédent par l'absence d'anomalies du côlon. Les mutations de c-KIT sont associées au piebaldisme et celles de MITF au syndrome de Waardenburg de type 2 (WS2A) ou au syndrome de Tietz. La similitude des anomalies pigmentaires, notamment la présence de taches blanches sur la peau des patients, font des mutants dominant megacolon et Splotch d'excellents modèles pour l'étude de ces maladies. Outre ces mutants naturels, les techniques de transgenèse chez la souris ont permis d'identifier d'autres gènes régulateurs de la migration, notamment le gène *Ctnnb1* codant pour la protéine β -caténine. Celle-ci contrôle l'expression de M-Mitf en agissant comme co-activateur des facteurs de la famille LEF (*lymphoid enhancer factor*)/TCF (*T cell factor*) qui se fixent sur le promoteur de M-Mitf. La surexpression d'une forme activée de β -caténine (β -cat*), localisée spécifiquement au niveau nucléaire, est associée à la présence d'un ventre blanc, résultat d'un défaut de migration des mélanoblastes au cours du développement [9]. Grâce à ce modèle, une implication des gènes M-Mitf et Csk (régulateur de Src) dans le défaut de migration des mélanocytes chez les souris B-cat* a pu être démontrée. Un autre gène clé de la migration in vivo des mélanocytes est le gène codant pour la GTPase Rac1. Chez le poisson-zèbre, Rac1 régule la migration des cellules de la crête neurale [10]. Son invalidation spécifique dans les mélanoblastes de souris génère un ventre blanc. L'absence de Rac1 provoque une réduction de la vitesse de migration des mélanoblastes, mais n'abolit pas le passage des mélanocytes du derme vers l'épiderme, ni la colonisation des follicules pileux [11]. L'importance de Racl lors de la migration a été confortée par la démonstration que l'invalidation chez la souris de P-Rex1, un membre de la famille GEF (Rho GTPase guanine nucleotide exchange factors) activant la formation de Rac-GTP, se traduit également par l'apparition d'un ventre blanc [12].

Modes de migration et mécanismes moléculaires associés

Nous disposons de peu d'informations concernant le mode de migration des mélanocytes in vivo car, compte tenu de leur nombre limité, la plupart des études ont été réalisées in vitro en système 2D avec des lignées de cellules de mélanome. L'utilisation récente de systèmes de culture 3D, qui recréent un environnement moins éloigné de la situation in vivo, a mis en évidence des différences marquées entre les deux systèmes que nous présentons dans cette section.

La migration 2D

Pour se déplacer en système 2D, les cellules doivent former des extensions de leur membrane plasmique (protrusions) au niveau du front de migration, de façon coordonnée avec le reste du corps cellulaire. Pour les cellules adhésives, deux types de protrusions coexistent, les lamellipodes et les filopodes, dont la structure et la composition moléculaire diffèrent [13]. Ces structures apparaissent de manière spontanée ou sont induites par des signaux externes émanant du microenvironnement. La migration est donc basée sur des cycles successifs d'extensions membranaires, d'adhésion, de traction du corps cellulaire et de rétraction. impliquant une dissymétrie entre l'avant et l'arrière de la cellule [14].

Mécanismes moléculaires associés à la migration 2D

Le cytosquelette d'actine et les molécules régulatrices de sa polymérisation sont impliqués dans tous les types de protrusions. En conséquence, l'assemblage et le désassemblage de l'actine sont des éléments clés de la migration cellulaire. La transmission des signaux des récepteurs membranaires au cytosquelette d'actine est assurée par les petites GTPases de la famille Rho qui oscillent entre une forme active liée au GTP et une forme inactive liée au GDP [15]. Elles sont régulées par deux familles de protéines : les GEF (guanine nucleotide exchange factor), qui favorisent la formation de la forme active, et les GAP (GTPase activating proteins) qui assurent l'inactivation par hydrolyse du GTP [16]. Les GTPases Rac et Cdc42 régulent respectivement la formation des lamellipodes et des filopodes, en induisant la polymérisation des filaments d'actine. Ceci permet l'extension du front de migration via l'activation successive des protéines de la famille WASP (Wiskott-Aldrich syndrome protein) et du complexe Arp2/3, régulateur de la polymérisation de l'actine [17]. Les protéines Dial et Dia2, membres de la famille des formines, participent également à l'extension du front de migration au niveau des lamellipodes et des filopodes, respectivement. En effet, ces protéines protègent les extrémités des filaments d'actine, empêchant ainsi l'arrêt de leur croissance [13]. Néanmoins, dans certaines lignées de mélanome, une réduction d'expression de M-Mitf induirait une diminution du taux de Dial et augmenterait la migration de ces cellules [18].

La migration 3D

Lorsqu'elles migrent individuellement en système 3D, certaines cellules de mélanome peuvent adopter deux morphologies et types de migration interconvertibles : le mode de migration mésenchymateux et le mode amiboïde, qui leur permettent de s'adapter à des variations du microenvironnement [19, 20] (Figure 2). Récemment, nous avons observé que certaines cellules de mélanome peuvent également adopter le mode de migration amiboïde en système 2D. Le mode de

Figure 2. Représentation schématique des molécules régulant l'équilibre et l'inter-convertibilité entre les modes de migration mésenchymateux et amiboïde. En système 3D, les cellules tumorales peuvent adopter deux types de migration interconvertibles : le mode mésenchymateux (morphologie allongée) et le mode amiboïde (morphologie arrondie et présence de bleb). Les cellules de mélanome sont capables de changer spontanément de type de migration de façon à s'adapter à leur microenvironnement. Le mode de migration mésenchymateux dépend de l'activation de Rac et Wave2 par le complexe Nedd9-Dock3. Le mode de migration amiboïde est largement associé au niveau de phosphorylation de la myosine II (pMLC) ainsi qu'à la contractilité des filaments d'actine-myosine sous le contrôle de Rho/ROCK. Rac et Rho ont des effets opposés sur la migration des cellules de mélanome.

migration mésenchymateux est caractéristique des cellules adhérentes qui présentent une morphologie allongée et bipolaire, et qui interagissent avec les composants de la matrice extracellulaire (MEC) au niveau des points d'adhésion focaux. Bien qu'il existe des ressemblances avec la migration 2D, les contraintes spatiales liées aux fibres de la MEC imposent des modifications de la morphologie cellulaire. Les lamellipodes sont remplacés par des pseudopodes orientés dans les trois dimensions, et des protéases nécessaires au remodelage de la MEC sont sécrétées [20, 21]. La vitesse de migration de ces cellules est relativement lente (0,1 μ m/min) [22].

Le mode de migration amiboïde est associé à une morphologie arrondie et repose sur le principe que la motilité en système 3D ne requiert pas nécessairement l'attachement de la cellule à son substrat [23]. Le mouvement s'effectue *via* la création de *bleb*, extensions courtes et sphériques de la membrane plasmique dépourvues d'actine et de très courte durée de vie. La formation initiale du *bleb* résulte d'un détachement local de l'actine corticale ou de sa rupture. L'augmentation de la pression intracellulaire génère alors un afflux de cytosol au niveau de la membrane qui permet l'extension du *bleb*. Pour que les *bleb* induisent une migration, ils doivent se former principalement au niveau du front de migration [24]. Dans ce contexte, la cellule est capable de s'insérer dans les cavités naturelles de la matrice sans qu'une protéolyse soit nécessaire. La vitesse de migration des cellules utilisant ce mécanisme varie entre 1 et 10 μm/min [22].

Mécanismes moléculaires associés à la migration 3D

La migration 3D selon le mode mésenchymateux fait intervenir un complexe entre Nedd9 (neural precursor cell expressed. developmentally downregulated 9) (membre de la famille CAS) et Dock3 (membre de la famille GEF) qui permet l'activation de la protéine Rac1. Cette GTPase active la protéine Wave2 (membre de la famille WASP) qui régule le complexe Arp2/3 impliqué dans la polymérisation de l'actine [19]. Le mode de migration amiboïde est contrôlé par le complexe Rho/Rock qui assure la phosphorylation de la myosine II (MLC2). La transition d'un mode mésenchymateux de migration vers le mode amiboïde associe une diminution de Rac-GTP et une augmentation de la phosphorylation de MLC2, montrant ainsi que Racl et Rho ont des effets opposés sur la migration des cellules de mélanome [19] (Figure 2).

Migration et invasion des mélanomes

Les mélanomes, tumeurs cutanées hautement métastatiques, résultent de la transformation maligne des mélanocytes. L'invasion des mélanomes résulte de la combinaison de différents mécanismes : la transition pseudo épithélio-mésenchymateuse, la perte de l'adhésion cellule-cellule, la perte de l'adhésion cellulematrice, la dégradation de la matrice, la chimioattraction/répulsion et la migration. Au cours de la phase de croissance radiale, les mélanocytes prolifèrent de façon aberrante et réduisent leur interaction avec les kératinocytes, via une perte d'expression des cadhérines E et P et de la desmogléine. Cette phase est suivie d'une phase de croissance verticale marguant le début du phénomène de migration, puisque les cellules de mélanome migrent de l'épiderme vers le derme en franchissant la lame basale. Cette transmigration, inverse de la migration normale des mélanoblastes, est une étape clé de la formation des métastases et s'accompagne d'une expression de novo de l'intégrine $\alpha v\beta 3$ [5]. Selon les études effectuées en système 3D, la présence d'invadopodes, protrusions de la membrane plasmique

Membrane plasmique

riches en actine, serait essentielle au franchissement de la membrane basale (Figure 3). La formation des invadopodes dans des cellules de morphologie mésenchymateuse requiert la présence de cortactine (protéine absente des lamellipodes et des filopodes) qui se lie à l'actine et à la cofiline [25]. L'élongation des filaments d'actine, via une déphosphorylation de la cofiline, et leur stabilisation par la fascine (normalement exprimée par les mélanocytes) participerait au processus d'invasion grâce aux métalloprotéases, notamment MT1-MMP (matrix metalloproteinase). Ces enzymes, libérées à l'extrémité de l'invadopode [13, 26], sont capables de dégrader la MEC permettant la progression des cellules de mélanome [27]. Cependant, l'absence d'invadopodes dans les mélanocytes normaux indique que les cellules de mélanome et les mélanocytes utilisent des protrusions membranaires et des protéines distinctes pour migrer [25, 28]. Les cellules de mélanome ne dégradent pas entièrement la membrane basale, mais créent, grâce à l'action des invadopodes, des petites perforations. Celles-ci vont ouvrir la voie à la dissémination des cellules dans le derme et à leur interaction avec les cellules endothéliales, préambule à l'intravasation des capillaires sanguins (Figure 3). Les études transcriptomiques ont identifié de nombreux gènes dont l'expression est altérée dans les cellules de mélanome devenues invasives. Parmi

ceux-ci, on trouve ceux qui codent pour de nombreux facteurs de croissance, dont le TGF β (transforming growth factor β). Celui-ci jouerait un rôle important dans l'invasion en conférant aux cellules peu pigmentées et exprimant fortement Brn2/N-oct3, un phénotype mésenchymateux favorisant le passage au travers de la MEC [29]. Parmi les nombreuses molécules participant activement au processus d'invasion des cellules de mélanome, nous citerons la protéine adaptatrice Nedd9, dont l'expression est souvent amplifiée dans les mélanomes ayant métastasé. Nedd9 participerait à la migration 3D en promouvant la transition amiboïde/ mésenchymateux [19, 30]; cepen-

Conclusion et perspectives

in vivo [31].

L'élucidation des mécanismes contrôlant la migration des cellules de mélanome a largement bénéficié des études *in vitro* en systèmes 2D et 3D. Cependant, notre compréhension de la colonisation métastatique par quelques cellules tumorales de tissus situés à une grande distance de la tumeur pri-

dant, ce mécanisme reste controversé

maire est nettement plus limitée. Les études *in vivo* des cellules du lignage mélanocytaire normal sont encore peu nombreuses, car délicates à mener chez la souris. Nul doute que l'utilisation de modèles, tels que celui du poisson-zèbre, et l'émergence de nouvelles techniques de culture *ex vivo* couplées à l'imagerie en temps réel avec des microscopes à haute résolution, permettront des progrès marquants dans un futur proche. **◊**

SUMMARY

Cellule

0

Microtubules

Actine

N-WASP

MEC

de mélanome

Membrane basale

Cofiline

Cortactine

Migration of melanocytic lineage-derived cells

During development, neural crest cells-derived melanoblasts migrate along the dorso-lateral axis into the dermis, then cross the basal layer to reach the epidermis and differentiate into melanocytes. They finally colonize the hair follicles to become resident pigmented cells. Neoplastic transformation converts melanocytes into highly invasive melanoma cells, which can adopt two modes of interconvertible migration (mesenchymal and amoeboid). Through analysis of the coat color phenotype of natural mouse mutants and genetically modified

Mélanome primaire

Membrane basale

Croissance radiale

Intravasation

Stroma (

0

Migration

C

Croissance verticale

animals, many of the genes regulating migration were identified. Deciphering of cell membrane protrusions and signaling molecules involved in melanoma cell motility was further achieved through 2D and 3D culture systems. Here, we summarize how these data allow a better understanding of the complex mechanisms controlling migration of normal and pathological cells of the melanocytic lineage. **◊**

LIENS D'INTÉRÊT

Les auteurs déclarent n'avoir aucun lien d'intérêt concernant les données publiées dans cet article.

RÉFÉRENCES

- Lamoreux ML, Delmas V, Larue L, Bennett D. The colors of mice: a model genetic network. Wiley-Blackwell, 2010.
- Larue L, Kumasaka M, Goding CR. Beta-catenin in the melanocyte lineage. Pigment Cell Res 2003; 16: 312-7.
- Luciani F, Champeval D, Herbette A, et al. Biological and mathematical modeling of melanocyte development. Development 2011; 138: 3943-54.
- Adameyko I, Lallemend F, Aquino JB, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 2009; 139: 366-79.
- Pinon P, Wehrle-Haller B. Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. *Pigment Cell Melanoma Res* 2011; 24: 282-94.
- Testaz S, Duband JL. Central role of the alpha4beta1 integrin in the coordination of avian truncal neural crest cell adhesion, migration, and survival. Dev Dyn 2001; 222: 127-40.
- Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2009; 20: 90-104.
- Santiago A, Erickson CA. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 2002; 129: 3621–32.
- Gallagher SJ, Rambow F, Kumasaka M, et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 2012; doi: 10.1038/onc.2012.229.
- Theveneau E, Marchant L, Kuriyama S, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010; 19: 39–53.
- Li A, Ma Y, Yu X, et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell 2011; 21: 722-34.
- Lindsay CR, Lawn S, Campbell AD, et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2: 555.
- 13. Ridley AJ. Life at the leading edge. *Cell* 2011 ; 145 : 1012-22.
- Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011; 5: 170-80.
- Primeau M, Lamarche-Vane N. Coup d'œil sur les petites GTPases Rho. Med Sci (Paris) 2008; 24: 157-62.

- Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol 2004; 265: 23-32.
- Chesarone MA, Goode BL. Actin nucleation and elongation factors: mechanisms and interplay. *Curr Opin Cell Biol* 2009; 21: 28-37.
- Carreira S, Goodall J, Denat L, et al. Mitf regulation of Dial controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426-39.
- Sanz-Moreno V, Gadea G, Ahn J, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510-23.
- Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188: 11-9.
- Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. *Nat Cell Biol* 2003; 5:711-9.
- Sanz-Moreno V, Marshall CJ. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. *Curr Opin Cell Biol* 2010; 22: 690-6.
- Lammermann T, Sixt M. Mechanical modes of 'amoeboid' cell migration. Curr Opin Cell Biol 2009; 21: 636-44.
- 24. Charras G, Paluch E. Blebs lead the way: how to migrate without lamellipodia. *Nat Rev Mol Cell Biol* 2008 ; 9 : 730-6.
- 25. Li A, Dawson JC, Forero-Vargas M, et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 2010; 20: 339-45.
- Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 2010; 189: 541-56.
- Gaggioli C, Sahai E. Melanoma invasion current knowledge and future directions. Pigment Cell Res 2007; 20: 161-72.
- 28. Pichot CS, Arvanitis C, Hartig SM, et al. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 2010; 70: 8347-56.
- 29. Pinner S, Jordan P, Sharrock K, et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. *Cancer Res* 2009; 69: 7969-77.
- Kim M, Gans JD, Nogueira C, *et al.* Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. *Cell* 2006; 125: 1269-81.
- Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versusindependent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 2009; 185: 11-9.

TIRÉS À PART

L. Larue

Bon de commande	
SOCIÉTÉ FRANÇAISE DE CARCINOLOGIE CERVICO-FACIALE XLP CONGRES	À retourner à EDK, 25, rue Daviel - 75013 Paris Tél. : 01 58 10 19 05 - Fax : 01 43 29 32 62 - E-mail : edk@edk.fr
Cancer de la thyroïde	NOM : Prénom :
Cancer des lèvres	Adresse :
	Code postal :
	Pays :
	Fonction :
	Je souhaite recevoir l'ouvrage Cancer de la thyroïde – Cancers des lèvres : 35 € + 3 € de port = 38 € TTC
Duritite Delization Description de Danasmire Jean-Frierie Reine	en exemplaire, soit un total de€
	Par chèque, à l'ordre de E D K
	Par carte bancaire : D Visa D Eurocard/Mastercard
	Carte n°
	Date d'expiration :
ISBN : 978-2-8425-4137-8 264 pages	N° de contrôle au dos de la carte : <u> </u>