Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling

B. Westlund, D. Parry, R. Clover, M. Basson and C. D. Johnson
Proceedings of the National Academy of Sciences 96 (5) 2497 (1999)
https://doi.org/10.1073/pnas.96.5.2497

A Cell-Free Assay Allows Reconstitution of Vps33p-Dependent Transport to the Yeast Vacuole/Lysosome

Thomas Vida and Brenda Gerhardt
The Journal of Cell Biology 146 (1) 85 (1999)
https://doi.org/10.1083/jcb.146.1.85

p24 Proteins and Quality Control of LIN-12 and GLP-1 Trafficking inCaenorhabditis elegans

Chenhui Wen and Iva Greenwald
The Journal of Cell Biology 145 (6) 1165 (1999)
https://doi.org/10.1083/jcb.145.6.1165

Proteolytic Processing ofCaenorhabditis elegansSQT-1 Cuticle Collagen Is Inhibited in Right Roller Mutants whereas Cross-linking Is Inhibited in Left Roller Mutants

Jie Yang and James M. Kramer
Journal of Biological Chemistry 274 (46) 32744 (1999)
https://doi.org/10.1074/jbc.274.46.32744

Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis

M.-W. Tan, S. Mahajan-Miklos and F. M. Ausubel
Proceedings of the National Academy of Sciences 96 (2) 715 (1999)
https://doi.org/10.1073/pnas.96.2.715

Genomic Organization, Expression, and Analysis of the Troponin C Genepat-10ofCaenorhabditis elegans

Hiromi Terami, Benjamin D. Williams, Shin-ichi Kitamura, et al.
The Journal of Cell Biology 146 (1) 193 (1999)
https://doi.org/10.1083/jcb.146.1.193

An exon that prevents transport of a mature mRNA

M. A. MacMorris, D. A. R. Zorio and T. Blumenthal
Proceedings of the National Academy of Sciences 96 (7) 3813 (1999)
https://doi.org/10.1073/pnas.96.7.3813

Neurosecretory control of aging in Caenorhabditis elegans

M. Ailion, T. Inoue, C. I. Weaver, R. W. Holdcraft and J. H. Thomas
Proceedings of the National Academy of Sciences 96 (13) 7394 (1999)
https://doi.org/10.1073/pnas.96.13.7394

Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa

C. Darby, C. L. Cosma, J. H. Thomas and C. Manoil
Proceedings of the National Academy of Sciences 96 (26) 15202 (1999)
https://doi.org/10.1073/pnas.96.26.15202

sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination

T. Herman, E. Hartwieg and H. R. Horvitz
Proceedings of the National Academy of Sciences 96 (3) 968 (1999)
https://doi.org/10.1073/pnas.96.3.968

Myotactin, a Novel Hypodermal Protein Involved in Muscle–Cell Adhesion inCaenorhabditis elegans

Michelle Coutu Hresko, Lawrence A. Schriefer, Paresh Shrimankar and Robert H. Waterston
The Journal of Cell Biology 146 (3) 659 (1999)
https://doi.org/10.1083/jcb.146.3.659

Regulation of the UNC-18–Caenorhabditis elegansSyntaxin Complex by UNC-13

Toshihiro Sassa, Shin-ichi Harada, Hisamitu Ogawa, James B. Rand, Ichiro N. Maruyama and Ryuji Hosono
The Journal of Neuroscience 19 (12) 4772 (1999)
https://doi.org/10.1523/JNEUROSCI.19-12-04772.1999

Role of a Class Dhc1b Dynein in Retrograde Transport of Ift Motors and Ift Raft Particles along Cilia, but Not Dendrites, in Chemosensory Neurons of LivingCaenorhabditis elegans

Dawn Signor, Karen P. Wedaman, Jose T. Orozco, et al.
The Journal of Cell Biology 147 (3) 519 (1999)
https://doi.org/10.1083/jcb.147.3.519

Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors

M.-W. Tan, L. G. Rahme, J. A. Sternberg, R. G. Tompkins and F. M. Ausubel
Proceedings of the National Academy of Sciences 96 (5) 2408 (1999)
https://doi.org/10.1073/pnas.96.5.2408

Block of an ether-a-go-go-Like K+Channel by Imipramine Rescuesegl-2Excitation Defects inCaenorhabditis elegans

David Weinshenker, Aguan Wei, Lawrence Salkoff and James H. Thomas
The Journal of Neuroscience 19 (22) 9831 (1999)
https://doi.org/10.1523/JNEUROSCI.19-22-09831.1999

Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish

Stephan C. F. Neuhauss, Oliver Biehlmaier, Mathias W. Seeliger, Tilak Das, Konrad Kohler, William A. Harris and Herwig Baier
The Journal of Neuroscience 19 (19) 8603 (1999)
https://doi.org/10.1523/JNEUROSCI.19-19-08603.1999

Coordinated Transcriptional Regulation of theunc-25Glutamic Acid Decarboxylase and theunc-47GABA Vesicular Transporter by theCaenorhabditis elegansUNC-30 Homeodomain Protein

Catharine Eastman, H. Robert Horvitz and Yishi Jin
The Journal of Neuroscience 19 (15) 6225 (1999)
https://doi.org/10.1523/JNEUROSCI.19-15-06225.1999

Thecat-1Gene ofCaenorhabditis elegansEncodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors

Janet S. Duerr, Dennis L. Frisby, Jennifer Gaskin, Angie Duke, Karen Asermely, David Huddleston, Lee E. Eiden and James B. Rand
The Journal of Neuroscience 19 (1) 72 (1999)
https://doi.org/10.1523/JNEUROSCI.19-01-00072.1999

TheCaenorhabditis elegansGeneunc-25Encodes Glutamic Acid Decarboxylase and Is Required for Synaptic Transmission But Not Synaptic Development

Yishi Jin, Erik Jorgensen, Erika Hartwieg and H. Robert Horvitz
The Journal of Neuroscience 19 (2) 539 (1999)
https://doi.org/10.1523/JNEUROSCI.19-02-00539.1999

The Nuclear Receptor Superfamily Has Undergone Extensive Proliferation and Diversification in Nematodes

Ann E. Sluder, Siuyien Wong Mathews, David Hough, Viravuth P. Yin and Claude V. Maina
Genome Research 9 (2) 103 (1999)
https://doi.org/10.1101/gr.9.2.103

Hcp-1, a Protein Involved in Chromosome Segregation, Is Localized to the Centromere of Mitotic Chromosomes inCaenorhabditis elegans

Landon L. Moore, Mike Morrison and Mark B. Roth
The Journal of Cell Biology 147 (3) 471 (1999)
https://doi.org/10.1083/jcb.147.3.471

The STAR protein QKI-6 is a translational repressor

L. Saccomanno, C. Loushin, E. Jan, et al.
Proceedings of the National Academy of Sciences 96 (22) 12605 (1999)
https://doi.org/10.1073/pnas.96.22.12605

Dissection of Cell Division Processes in the One Cell StageCaenorhabditis elegansEmbryo by Mutational Analysis

Pierre Gönczy, Heinke Schnabel, Titus Kaletta, et al.
The Journal of Cell Biology 144 (5) 927 (1999)
https://doi.org/10.1083/jcb.144.5.927

Ca2+/Calmodulin-dependent Protein Kinase Cascade inCaenorhabditis elegans

Koh Eto, Naomi Takahashi, Yoshishige Kimura, et al.
Journal of Biological Chemistry 274 (32) 22556 (1999)
https://doi.org/10.1074/jbc.274.32.22556

Thermal avoidance in Caenorhabditis elegans: An approach to the study of nociception

N. Wittenburg and R. Baumeister
Proceedings of the National Academy of Sciences 96 (18) 10477 (1999)
https://doi.org/10.1073/pnas.96.18.10477

Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway

T. Herman and H. R. Horvitz
Proceedings of the National Academy of Sciences 96 (3) 974 (1999)
https://doi.org/10.1073/pnas.96.3.974

A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans

B. van Swinderen, O. Saifee, L. Shebester, et al.
Proceedings of the National Academy of Sciences 96 (5) 2479 (1999)
https://doi.org/10.1073/pnas.96.5.2479

Identification of transforming growth factor-beta - regulated genes in Caenorhabditis elegans by differential hybridization of arrayed cDNAs

M. Mochii, S. Yoshida, K. Morita, Y. Kohara and N. Ueno
Proceedings of the National Academy of Sciences 96 (26) 15020 (1999)
https://doi.org/10.1073/pnas.96.26.15020

Functional Genomics in the Mouse: Phenotype-Based Mutagenesis Screens

John Schimenti and Maja Bucan
Genome Research 8 (7) 698 (1998)
https://doi.org/10.1101/gr.8.7.698

In vivo function of mutated spliced leader RNAs in Caenorhabditis elegans

H. Xie and D. Hirsh
Proceedings of the National Academy of Sciences 95 (8) 4235 (1998)
https://doi.org/10.1073/pnas.95.8.4235

Unc-45Mutations inCaenorhabditis elegansImplicate a CRO1/She4p-like Domain in Myosin Assembly

José M. Barral, Christopher C. Bauer, Irving Ortiz and Henry F. Epstein
The Journal of Cell Biology 143 (5) 1215 (1998)
https://doi.org/10.1083/jcb.143.5.1215

Negative regulation of the heat shock transcriptional response by HSBP1

Sanjeev H. Satyal, Dayue Chen, Susan G. Fox, James M. Kramer and Richard I. Morimoto
Genes & Development 12 (13) 1962 (1998)
https://doi.org/10.1101/gad.12.13.1962

pha-4, anHNF-3 homolog, specifies pharyngeal organ identity inCaenorhabditis elegans

Michael A. Horner, Sophie Quintin, Mary Ellen Domeier, Judith Kimble, Michel Labouesse and Susan E. Mango
Genes & Development 12 (13) 1947 (1998)
https://doi.org/10.1101/gad.12.13.1947

clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans

Michelle Kokel, Christina Z. Borland, Leslie DeLong, H. Robert Horvitz and Michael J. Stern
Genes & Development 12 (10) 1425 (1998)
https://doi.org/10.1101/gad.12.10.1425

AIR-2: An Aurora/Ipl1-related Protein Kinase Associated with Chromosomes and Midbody Microtubules Is Required for Polar Body Extrusion and Cytokinesis inCaenorhabditis elegansEmbryos

Jill M. Schumacher, Andy Golden and Peter J. Donovan
The Journal of Cell Biology 143 (6) 1635 (1998)
https://doi.org/10.1083/jcb.143.6.1635

Ca2+-dependent Muscle Dysfunction Caused by Mutation of theCaenorhabditis elegansTroponin T-1 Gene

Kristen McArdle, Taylor StC. Allen and Elizabeth A. Bucher
The Journal of Cell Biology 143 (5) 1201 (1998)
https://doi.org/10.1083/jcb.143.5.1201

Multiple Isoforms of Eukaryotic Protein Synthesis Initiation Factor 4E inCaenorhabditis elegansCan Distinguish between Mono- and Trimethylated mRNA Cap Structures

Marzena Jankowska-Anyszka, Barry J. Lamphear, Eric J. Aamodt, et al.
Journal of Biological Chemistry 273 (17) 10538 (1998)
https://doi.org/10.1074/jbc.273.17.10538

Serine Hydroxymethyltransferase Is Maternally Essential inCaenorhabditis elegans

Greg P. Vatcher, Colin M. Thacker, Titus Kaletta, et al.
Journal of Biological Chemistry 273 (11) 6066 (1998)
https://doi.org/10.1074/jbc.273.11.6066

ncl-1Is Required for the Regulation of Cell Size and Ribosomal RNA Synthesis inCaenorhabditis elegans

Deborah J. Frank and Mark B. Roth
The Journal of Cell Biology 140 (6) 1321 (1998)
https://doi.org/10.1083/jcb.140.6.1321

Cadmium-regulated Genes from the NematodeCaenorhabditis elegans

Vivian Hsiu-Chuan Liao and Jonathan H. Freedman
Journal of Biological Chemistry 273 (48) 31962 (1998)
https://doi.org/10.1074/jbc.273.48.31962

An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans

M. Take-uchi, M. Kawakami, T. Ishihara, et al.
Proceedings of the National Academy of Sciences 95 (20) 11775 (1998)
https://doi.org/10.1073/pnas.95.20.11775

Functional Properties of theunc-64Gene Encoding aCaenorhabditis elegansSyntaxin

Hisamitsu Ogawa, Shin-ichi Harada, Toshihiro Sassa, Hiroshi Yamamoto and Ryuji Hosono
Journal of Biological Chemistry 273 (4) 2192 (1998)
https://doi.org/10.1074/jbc.273.4.2192

Genomic Structure of MUNC18-1 Protein, Which Is Involved in Docking and Fusion of Synaptic Vesicles in Brain

Koshichi Gotoh, Hiroshi Yokota, Eriko Kikuya, Toshio Watanabe and Michio Oishi
Journal of Biological Chemistry 273 (34) 21642 (1998)
https://doi.org/10.1074/jbc.273.34.21642

β-Filagenin, a Newly Identified Protein Coassembling with Myosin and Paramyosin inCaenorhabditis elegans

Feizhou Liu, Christopher C. Bauer, Irving Ortiz, et al.
The Journal of Cell Biology 140 (2) 347 (1998)
https://doi.org/10.1083/jcb.140.2.347

Caenorhabditis elegansContains Two Distinct Acid Sphingomyelinases

Xinhua Lin, Michael O. Hengartner and Richard Kolesnick
Journal of Biological Chemistry 273 (23) 14374 (1998)
https://doi.org/10.1074/jbc.273.23.14374

RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans

M. K. Montgomery, S. Xu and A. Fire
Proceedings of the National Academy of Sciences 95 (26) 15502 (1998)
https://doi.org/10.1073/pnas.95.26.15502

soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling

L. M. Selfors, J. L. Schutzman, C. Z. Borland and M. J. Stern
Proceedings of the National Academy of Sciences 95 (12) 6903 (1998)
https://doi.org/10.1073/pnas.95.12.6903

Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin

G. Wu, E. J. A. Hubbard, J. K. Kitajewski and I. Greenwald
Proceedings of the National Academy of Sciences 95 (26) 15787 (1998)
https://doi.org/10.1073/pnas.95.26.15787

Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins

X. Li and I. Greenwald
Proceedings of the National Academy of Sciences 95 (12) 7109 (1998)
https://doi.org/10.1073/pnas.95.12.7109

Structure and Organization of theDrosophilaCholinergic Locus

Toshihiro Kitamoto, Weiya Wang and Paul M. Salvaterra
Journal of Biological Chemistry 273 (5) 2706 (1998)
https://doi.org/10.1074/jbc.273.5.2706

UNC-55, an Orphan Nuclear Hormone Receptor, Orchestrates Synaptic Specificity among Two Classes of Motor Neurons inCaenorhabditis elegans

H. Mimi Zhou and W. W. Walthall
The Journal of Neuroscience 18 (24) 10438 (1998)
https://doi.org/10.1523/JNEUROSCI.18-24-10438.1998

Retinal Targets for Calmodulin Include Proteins Implicated in Synaptic Transmission

Xian-Zhong Shawn Xu, Paul D. Wes, Hua Chen, et al.
Journal of Biological Chemistry 273 (47) 31297 (1998)
https://doi.org/10.1074/jbc.273.47.31297

unc-1: A stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans

S. Rajaram, M. M. Sedensky and P. G. Morgan
Proceedings of the National Academy of Sciences 95 (15) 8761 (1998)
https://doi.org/10.1073/pnas.95.15.8761

Increased competitiveness of nematode sperm bearing the male X chromosome

C. W. LaMunyon and S. Ward
Proceedings of the National Academy of Sciences 94 (1) 185 (1997)
https://doi.org/10.1073/pnas.94.1.185

Genetically targeted cell disruption in Caenorhabditis elegans

S. Harbinder, N. Tavernarakis, L. A. Herndon, et al.
Proceedings of the National Academy of Sciences 94 (24) 13128 (1997)
https://doi.org/10.1073/pnas.94.24.13128

Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase

A. G. Ryazanov, M. D. Ward, C. E. Mendola, et al.
Proceedings of the National Academy of Sciences 94 (10) 4884 (1997)
https://doi.org/10.1073/pnas.94.10.4884

Identification of chemical synapses in the pharynx of Caenorhabditis elegans

H. Li, L. Avery, W. Denk and G. P. Hess
Proceedings of the National Academy of Sciences 94 (11) 5912 (1997)
https://doi.org/10.1073/pnas.94.11.5912

Cloning, Expression, and Characterization of Two Manganese Superoxide Dismutases fromCaenorhabditis elegans

Thérèse Hunter, William H. Bannister and Gary J. Hunter
Journal of Biological Chemistry 272 (45) 28652 (1997)
https://doi.org/10.1074/jbc.272.45.28652

Type IV Collagen Is Detectable in Most, but Not All, Basement Membranes ofCaenorhabditis elegansand Assembles on Tissues That Do Not Express It

Patricia L. Graham, Jeffrey J. Johnson, Shaoru Wang, et al.
The Journal of Cell Biology 137 (5) 1171 (1997)
https://doi.org/10.1083/jcb.137.5.1171

Structure of the 32-kDa Galectin Gene of the NematodeCaenorhabditis elegans

Yoichiro Arata, Jun Hirabayashi and Ken-ichi Kasai
Journal of Biological Chemistry 272 (42) 26669 (1997)
https://doi.org/10.1074/jbc.272.42.26669

The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation

L. Bloom and H. R. Horvitz
Proceedings of the National Academy of Sciences 94 (7) 3414 (1997)
https://doi.org/10.1073/pnas.94.7.3414

A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans

S. G. Clark, D.-L. Shurland, E. M. Meyerowitz, C. I. Bargmann and A. M. van der Bliek
Proceedings of the National Academy of Sciences 94 (19) 10438 (1997)
https://doi.org/10.1073/pnas.94.19.10438

Quantitative trait loci controlling halothane sensitivity in Caenorhabditis elegans

B. van Swinderen, D. R. Shook, R. H. Ebert, et al.
Proceedings of the National Academy of Sciences 94 (15) 8232 (1997)
https://doi.org/10.1073/pnas.94.15.8232

Neuropathology of Degenerative Cell Death inCaenorhabditis elegans

David H. Hall, Guoqiang Gu, Jaime Garcı́a-Añoveros, Lei Gong, Martin Chalfie and Monica Driscoll
The Journal of Neuroscience 17 (3) 1033 (1997)
https://doi.org/10.1523/JNEUROSCI.17-03-01033.1997

OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation inCaenorhabditis elegans

Heather A. Colbert, Tracy L. Smith and Cornelia I. Bargmann
The Journal of Neuroscience 17 (21) 8259 (1997)
https://doi.org/10.1523/JNEUROSCI.17-21-08259.1997

Caenorhabditis elegansLevamisole Resistance Geneslev-1,unc-29, andunc-38Encode Functional Nicotinic Acetylcholine Receptor Subunits

John T. Fleming, Michael D. Squire, Thomas M. Barnes, Camilla Tornoe, Kazuhiko Matsuda, Joohong Ahnn, Andrew Fire, John E. Sulston, Eric A. Barnard, David B. Sattelle and James A. Lewis
The Journal of Neuroscience 17 (15) 5843 (1997)
https://doi.org/10.1523/JNEUROSCI.17-15-05843.1997

Characterization of α1(IV) Collagen Mutations inCaenorhabditis elegansand the Effects of α1 and α2(IV) Mutations on Type IV Collagen Distribution

Malini C. Gupta, Patricia L. Graham and James M. Kramer
The Journal of Cell Biology 137 (5) 1185 (1997)
https://doi.org/10.1083/jcb.137.5.1185

sel-10, a negative regulator of lin-12 activity inCaenorhabditis elegans, encodes a member of the CDC4 family of proteins

E. Jane Albert Hubbard, Guangyu Wu, Jan Kitajewski and Iva Greenwald
Genes & Development 11 (23) 3182 (1997)
https://doi.org/10.1101/gad.11.23.3182

Inhibition of Caenorhabditis elegans vulval induction bygap-1 and by let-23 receptor tyrosine kinase

Alex Hajnal, Charles W. Whitfield and Stuart K. Kim
Genes & Development 11 (20) 2715 (1997)
https://doi.org/10.1101/gad.11.20.2715

The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51.

K Ogura, M Shirakawa, T M Barnes, S Hekimi and Y Ohshima
Genes & Development 11 (14) 1801 (1997)
https://doi.org/10.1101/gad.11.14.1801

ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos.

B D Page, W Zhang, K Steward, T Blumenthal and J R Priess
Genes & Development 11 (13) 1651 (1997)
https://doi.org/10.1101/gad.11.13.1651

Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape.

A Wissmann, J Ingles, J D McGhee and P E Mains
Genes & Development 11 (4) 409 (1997)
https://doi.org/10.1101/gad.11.4.409

end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos

Jiangwen Zhu, Russell J. Hill, Paul J. Heid, Masamitsu Fukuyama, Asako Sugimoto, James R. Priess and Joel H. Rothman
Genes & Development 11 (21) 2883 (1997)
https://doi.org/10.1101/gad.11.21.2883

Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans.

H A Colbert and C I Bargmann
Learning & Memory 4 (2) 179 (1997)
https://doi.org/10.1101/lm.4.2.179

Interpreting a Sequenced Genome: Toward a Cosmid Transgenic Library ofCaenorhabditis elegans

Diana L. Janke, Jacqueline E. Schein, Thê Ha, Norman W. Franz, Nigel J. O’Neil, Greg P. Vatcher, Helen I. Stewart, Lynnette M. Kuervers, David L. Baillie and Ann M. Rose
Genome Research 7 (10) 974 (1997)
https://doi.org/10.1101/gr.7.10.974

Direct Interaction of the Ratunc-13Homologue Munc13-1 with the N Terminus of Syntaxin

Andrea Betz, Masaya Okamoto, Fritz Benseler and Nils Brose
Journal of Biological Chemistry 272 (4) 2520 (1997)
https://doi.org/10.1074/jbc.272.4.2520

smg mutants affect the expression of alternatively spliced SR protein mRNAs in Caenorhabditis elegans

M. Morrison, K. S. Harris and M. B. Roth
Proceedings of the National Academy of Sciences 94 (18) 9782 (1997)
https://doi.org/10.1073/pnas.94.18.9782

HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling

X. Li and I. Greenwald
Proceedings of the National Academy of Sciences 94 (22) 12204 (1997)
https://doi.org/10.1073/pnas.94.22.12204

Assessment of normal and mutant human presenilin function in Caenorhabditis elegans

D. Levitan, T. G. Doyle, D. Brousseau, et al.
Proceedings of the National Academy of Sciences 93 (25) 14940 (1996)
https://doi.org/10.1073/pnas.93.25.14940

A Murine Neural-Specific Homolog Corrects Cholinergic Defects inCaenorhabditis elegans unc-18Mutants

Keiko Gengyo-Ando, Hitoshi Kitayama, Masahiro Mukaida and Yoji Ikawa
The Journal of Neuroscience 16 (21) 6695 (1996)
https://doi.org/10.1523/JNEUROSCI.16-21-06695.1996

A Dynamic Network Simulation of the Nematode Tap Withdrawal Circuit: Predictions Concerning Synaptic Function Using Behavioral Criteria

Stephen R. Wicks, Chris J. Roehrig and Catharine H. Rankin
The Journal of Neuroscience 16 (12) 4017 (1996)
https://doi.org/10.1523/JNEUROSCI.16-12-04017.1996

The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and encodes a zinc finger protein.

M Basson and H R Horvitz
Genes & Development 10 (15) 1953 (1996)
https://doi.org/10.1101/gad.10.15.1953

The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein.

H Sawa, L Lobel and H R Horvitz
Genes & Development 10 (17) 2189 (1996)
https://doi.org/10.1101/gad.10.17.2189

Caenorhabditis elegans sex-determining protein FEM-2 is a protein phosphatase that promotes male development and interacts directly with FEM-3.

I D Chin-Sang and A M Spence
Genes & Development 10 (18) 2314 (1996)
https://doi.org/10.1101/gad.10.18.2314

Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans

M. E. Gruidl, P. A. Smith, K. A. Kuznicki, et al.
Proceedings of the National Academy of Sciences 93 (24) 13837 (1996)
https://doi.org/10.1073/pnas.93.24.13837

The SL1 trans-spliced leader RNA performs an essential embryonic function in Caenorhabditis elegans that can also be supplied by SL2 RNA.

K C Ferguson, P J Heid and J H Rothman
Genes & Development 10 (12) 1543 (1996)
https://doi.org/10.1101/gad.10.12.1543

Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities.

S Shaham and H R Horvitz
Genes & Development 10 (5) 578 (1996)
https://doi.org/10.1101/gad.10.5.578

Dominant feminizing mutations implicate protein-protein interactions as the main mode of regulation of the nematode sex-determining gene tra-1.

M de Bono, D Zarkower and J Hodgkin
Genes & Development 9 (2) 155 (1995)
https://doi.org/10.1101/gad.9.2.155

Mammalian Homologues ofCaenorhabditis elegans unc-13Gene Define Novel Family of C2-domain Proteins

Nils Brose, Kay Hofmann, Yutaka Hata and Thomas C. Südhof
Journal of Biological Chemistry 270 (42) 25273 (1995)
https://doi.org/10.1074/jbc.270.42.25273

The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway.

G J Beitel, S Tuck, I Greenwald and H R Horvitz
Genes & Development 9 (24) 3149 (1995)
https://doi.org/10.1101/gad.9.24.3149

elt-2, a Second GATA Factor from the NematodeCaenorhabditis elegans

Mark G. Hawkins and James D. McGhee
Journal of Biological Chemistry 270 (24) 14666 (1995)
https://doi.org/10.1074/jbc.270.24.14666

sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction.

N Singh and M Han
Genes & Development 9 (18) 2251 (1995)
https://doi.org/10.1101/gad.9.18.2251

The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin.

J P Varkey, P J Muhlrad, A N Minniti, B Do and S Ward
Genes & Development 9 (9) 1074 (1995)
https://doi.org/10.1101/gad.9.9.1074

The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology.

C Thacker, K Peters, M Srayko and A M Rose
Genes & Development 9 (8) 956 (1995)
https://doi.org/10.1101/gad.9.8.956

The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK.

K Kornfeld, K L Guan and H R Horvitz
Genes & Development 9 (6) 756 (1995)
https://doi.org/10.1101/gad.9.6.756