Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

The Role of the Presenilin-1 Homologue Genesel-12ofCaenorhabditis elegansin Apoptotic Activities

Naoyuki Kitagawa, Shun Shimohama, Tomoko Oeda, et al.
Journal of Biological Chemistry 278 (14) 12130 (2003)
https://doi.org/10.1074/jbc.M212058200

PAR-dependent and geometry-dependent mechanisms of spindle positioning

Meng-Fu Bryan Tsou, Wei Ku, Adam Hayashi and Lesilee S. Rose
The Journal of Cell Biology 160 (6) 845 (2003)
https://doi.org/10.1083/jcb.200209079

Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles inCaenorhabditis elegans

Aaron F. Severson and Bruce Bowerman
The Journal of Cell Biology 161 (1) 21 (2003)
https://doi.org/10.1083/jcb.200210171

BIR-1, a Caenorhabditis elegans homologue of Survivin, regulates transcription and development

M. Kostrouchova, Z. Kostrouch, V. Saudek, J. Piatigorsky and J. E. Rall
Proceedings of the National Academy of Sciences 100 (9) 5240 (2003)
https://doi.org/10.1073/pnas.0730770100

Critical Residues of theCaenorhabditis elegans unc-2Voltage-Gated Calcium Channel That Affect Behavioral and Physiological Properties

Eleanor A. Mathews, Esperanza García, Celia M. Santi, Gregory P. Mullen, Colin Thacker, Donald G. Moerman and Terrance P. Snutch
The Journal of Neuroscience 23 (16) 6537 (2003)
https://doi.org/10.1523/JNEUROSCI.23-16-06537.2003

TheCaenorhabditis elegansp120 catenin homologue, JAC-1, modulates cadherin–catenin function during epidermal morphogenesis

Jonathan Pettitt, Elisabeth A. Cox, Ian D. Broadbent, Aileen Flett and Jeff Hardin
The Journal of Cell Biology 162 (1) 15 (2003)
https://doi.org/10.1083/jcb.200212136

Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition

Jawdat Al-Bassam, Yujia Cui, Dieter Klopfenstein, et al.
The Journal of Cell Biology 163 (4) 743 (2003)
https://doi.org/10.1083/jcb.200308020

Genetic Analysis of the Myotubularin Family of Phosphatases in Caenorhabditis elegans

Yingzi Xue, Hanna Fares, Barth Grant, et al.
Journal of Biological Chemistry 278 (36) 34380 (2003)
https://doi.org/10.1074/jbc.M303259200

A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons ofC. elegans

Sarah Chang, Robert J. Johnston and Oliver Hobert
Genes & Development 17 (17) 2123 (2003)
https://doi.org/10.1101/gad.1117903

An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation inCaenorhabditis elegans

Michael A. Miller, Paul J. Ruest, Mary Kosinski, Steven K. Hanks and David Greenstein
Genes & Development 17 (2) 187 (2003)
https://doi.org/10.1101/gad.1028303

A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function inC. elegans

Dayalan G. Srinivasan, Ridgely M. Fisk, Huihong Xu and Sander van den Heuvel
Genes & Development 17 (10) 1225 (2003)
https://doi.org/10.1101/gad.1081203

SKN-1 linksC. elegansmesendodermal specification to a conserved oxidative stress response

Jae Hyung An and T. Keith Blackwell
Genes & Development 17 (15) 1882 (2003)
https://doi.org/10.1101/gad.1107803

Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans

Xantha Karp and Iva Greenwald
Genes & Development 17 (24) 3100 (2003)
https://doi.org/10.1101/gad.1160803

Coordinate Expression of NADPH-dependent Flavin Reductase, Fre-1, and Hint-related 7meGMP-directed Hydrolase, DCS-1

Dorota A. Kwasnicka, Agnieszka Krakowiak, Colin Thacker, Charles Brenner and Steven R. Vincent
Journal of Biological Chemistry 278 (40) 39051 (2003)
https://doi.org/10.1074/jbc.M306355200

Caenorhabditis elegansUNC-103 ERG-Like Potassium Channel Regulates Contractile Behaviors of Sex Muscles in Males before and during Mating

L. Rene Garcia and Paul W. Sternberg
The Journal of Neuroscience 23 (7) 2696 (2003)
https://doi.org/10.1523/JNEUROSCI.23-07-02696.2003

Cathepsin L Is Essential for Embryogenesis and Development ofCaenorhabditis elegans

Sarwar Hashmi, Collette Britton, Jing Liu, et al.
Journal of Biological Chemistry 277 (5) 3477 (2002)
https://doi.org/10.1074/jbc.M106117200

The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans

Stephen A. Kostas and Andrew Fire
Genes & Development 16 (2) 257 (2002)
https://doi.org/10.1101/gad.923102

α spectrin is essential for morphogenesis and body wall muscle formation inCaenorhabditis elegans

Kenneth R. Norman and Donald G. Moerman
The Journal of Cell Biology 157 (4) 665 (2002)
https://doi.org/10.1083/jcb.200111051

The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development

H.-Y. Hwang and H. R. Horvitz
Proceedings of the National Academy of Sciences 99 (22) 14218 (2002)
https://doi.org/10.1073/pnas.172522199

Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity

N. P. Degtyareva, P. Greenwell, E. R. Hofmann, et al.
Proceedings of the National Academy of Sciences 99 (4) 2158 (2002)
https://doi.org/10.1073/pnas.032671599

The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans

J. F. Morley, H. R. Brignull, J. J. Weyers and R. I. Morimoto
Proceedings of the National Academy of Sciences 99 (16) 10417 (2002)
https://doi.org/10.1073/pnas.152161099

Using RNA interference to identify genes required for RNA interference

N. R. Dudley, J.-C. Labbe and B. Goldstein
Proceedings of the National Academy of Sciences 99 (7) 4191 (2002)
https://doi.org/10.1073/pnas.062605199

The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types

B. M. Hersh, E. Hartwieg and H. R. Horvitz
Proceedings of the National Academy of Sciences 99 (7) 4355 (2002)
https://doi.org/10.1073/pnas.062065399

Ubiquinone Is Necessary forCaenorhabditis elegansDevelopment at Mitochondrial and Non-mitochondrial Sites

Abdelmadjid K. Hihi, Yuan Gao and Siegfried Hekimi
Journal of Biological Chemistry 277 (3) 2202 (2002)
https://doi.org/10.1074/jbc.M109034200

Development and Fertility inCaenorhabditis elegans clk-1Mutants Depend upon Transport of Dietary Coenzyme Q8to Mitochondria

Tanya Jonassen, Beth N. Marbois, Kym F. Faull, Catherine F. Clarke and Pamela L. Larsen
Journal of Biological Chemistry 277 (47) 45020 (2002)
https://doi.org/10.1074/jbc.M204758200

Cell cycle– and swelling-induced activation of aCaenorhabditis elegansClC channel is mediated by CeGLC-7α/β phosphatases

Eric Rutledge, Jerod Denton and Kevin Strange
The Journal of Cell Biology 158 (3) 435 (2002)
https://doi.org/10.1083/jcb.200204142

The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated

H.-Y. Hwang and H. R. Horvitz
Proceedings of the National Academy of Sciences 99 (22) 14224 (2002)
https://doi.org/10.1073/pnas.172522499

Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans

R. Nass, D. H. Hall, D. M. Miller and R. D. Blakely
Proceedings of the National Academy of Sciences 99 (5) 3264 (2002)
https://doi.org/10.1073/pnas.042497999

APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos

C. Goutte, M. Tsunozaki, V. A. Hale and J. R. Priess
Proceedings of the National Academy of Sciences 99 (2) 775 (2002)
https://doi.org/10.1073/pnas.022523499

SKIP is an indispensable factor for Caenorhabditis elegans development

M. Kostrouchova, D. Housa, Z. Kostrouch, V. Saudek and J. E. Rall
Proceedings of the National Academy of Sciences 99 (14) 9254 (2002)
https://doi.org/10.1073/pnas.112213799

Nonlinear partial differential equations and applications: Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis

E. Mylonakis, F. M. Ausubel, J. R. Perfect, J. Heitman and S. B. Calderwood
Proceedings of the National Academy of Sciences 99 (24) 15675 (2002)
https://doi.org/10.1073/pnas.232568599

TheCaenorhabditis elegansGene,gly-2, Can Rescue theN-Acetylglucosaminyltransferase V Mutation of Lec4 Cells

Charles E. Warren, Aldis Krizus, Peter J. Roy, Joseph G. Culotti and James W. Dennis
Journal of Biological Chemistry 277 (25) 22829 (2002)
https://doi.org/10.1074/jbc.M201390200

The Caenorhabditis elegans ADAMTS Family Gene adt-1 Is Necessary for Morphogenesis of the Male Copulatory Organs

Kouji Kuno, Chie Baba, Atsuko Asaka, et al.
Journal of Biological Chemistry 277 (14) 12228 (2002)
https://doi.org/10.1074/jbc.M200144200

The aurora kinase AIR-2 functions in the release of chromosome cohesion inCaenorhabditis elegansmeiosis

Eric Rogers, John D. Bishop, James A. Waddle, Jill M. Schumacher and Rueyling Lin
The Journal of Cell Biology 157 (2) 219 (2002)
https://doi.org/10.1083/jcb.200110045

Control of neuronal subtype identity by the C. elegans ARID protein CFI-1

Shai Shaham and Cornelia I. Bargmann
Genes & Development 16 (8) 972 (2002)
https://doi.org/10.1101/gad.976002

Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction

Julie E. Gleason, Hendrik C. Korswagen and David M. Eisenmann
Genes & Development 16 (10) 1281 (2002)
https://doi.org/10.1101/gad.981602

Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment

Jeffrey H. Stear and Mark B. Roth
Genes & Development 16 (12) 1498 (2002)
https://doi.org/10.1101/gad.989102

CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo

Eun Yong Shim, Amy K. Walker, Yang Shi and T. Keith Blackwell
Genes & Development 16 (16) 2135 (2002)
https://doi.org/10.1101/gad.999002

Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family

Robyn Lints and Scott W. Emmons
Genes & Development 16 (18) 2390 (2002)
https://doi.org/10.1101/gad.1012602

Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans

Amy J. MacQueen, Mónica P. Colaiácovo, Kent McDonald and Anne M. Villeneuve
Genes & Development 16 (18) 2428 (2002)
https://doi.org/10.1101/gad.1011602

The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

Katherine M. Nolan, Trina R. Sarafi-Reinach, Jennifer G. Horne, Adam M. Saffer and Piali Sengupta
Genes & Development 16 (23) 3061 (2002)
https://doi.org/10.1101/gad.1027702

A New Group-Training Procedure for Habituation Demonstrates That Presynaptic Glutamate Release Contributes to Long-Term Memory in Caenorhabditis elegans

Jacqueline K. Rose, Karla R. Kaun and Catharine H. Rankin
Learning & Memory 9 (3) 130 (2002)
https://doi.org/10.1101/lm.46802

Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans

J. M. Simon and P. W. Sternberg
Proceedings of the National Academy of Sciences 99 (3) 1598 (2002)
https://doi.org/10.1073/pnas.032225799

A Novel Cyclophilin from Parasitic and Free-living Nematodes with a Unique Substrate- and Drug-binding Domain

Dong Ma, Laura S. Nelson, Krystel LeCoz, Catherine Poole and Clotilde K. S. Carlow
Journal of Biological Chemistry 277 (17) 14925 (2002)
https://doi.org/10.1074/jbc.M112293200

The L-type voltage-dependent Ca2+channel EGL-19 controls body wall muscle function inCaenorhabditis elegans

Maëlle Jospin, Vincent Jacquemond, Marie-Christine Mariol, Laurent Ségalat and Bruno Allard
The Journal of Cell Biology 159 (2) 337 (2002)
https://doi.org/10.1083/jcb.200203055

Insulin Receptor Substrate and p55 Orthologous Adaptor Proteins Function in theCaenorhabditis elegans daf-2/Insulin-like Signaling Pathway

Catherine A. Wolkow, Manuel J. Muñoz, Donald L. Riddle and Gary Ruvkun
Journal of Biological Chemistry 277 (51) 49591 (2002)
https://doi.org/10.1074/jbc.M207866200

C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component

Robyn M. Howard and Meera V. Sundaram
Genes & Development 16 (14) 1815 (2002)
https://doi.org/10.1101/gad.998402

The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans

Martha C. Soto, Hiroshi Qadota, Katsuhisa Kasuya, Makiko Inoue, Daisuke Tsuboi, Craig C. Mello and Kozo Kaibuchi
Genes & Development 16 (5) 620 (2002)
https://doi.org/10.1101/gad.955702

PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans

Christina Tenenhaus, Kuppuswamy Subramaniam, Melanie A. Dunn and Geraldine Seydoux
Genes & Development 15 (8) 1031 (2001)
https://doi.org/10.1101/gad.876201

Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans

Ji Wu, Anne Duggan and Martin Chalfie
Genes & Development 15 (6) 789 (2001)
https://doi.org/10.1101/gad.857401

SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose

P. Berninsone, H.-Y. Hwang, I. Zemtseva, H. R. Horvitz and C. B. Hirschberg
Proceedings of the National Academy of Sciences 98 (7) 3738 (2001)
https://doi.org/10.1073/pnas.061593098

Developmental Regulation of a Novel Outwardly Rectifying Mechanosensitive Anion Channel inCaenorhabditis elegans

Michael Christensen and Kevin Strange
Journal of Biological Chemistry 276 (48) 45024 (2001)
https://doi.org/10.1074/jbc.M107652200

Expression and Secretion of a Larval-specific Chitinase (Family 18 Glycosyl Hydrolase) by the Infective Stages of the Parasitic Nematode,Onchocerca volvulus

Yang Wu, Gillian Egerton, Anthony P. Underwood, Shohei Sakuda and Albert E. Bianco
Journal of Biological Chemistry 276 (45) 42557 (2001)
https://doi.org/10.1074/jbc.M103479200

Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans

M. Hanazawa, M. Mochii, N. Ueno, Y. Kohara and Y. Iino
Proceedings of the National Academy of Sciences 98 (15) 8686 (2001)
https://doi.org/10.1073/pnas.141004698

Four SubunitaIsoforms ofCaenorhabditis elegansVacuolar H+-ATPase

Toshihiko Oka, Takao Toyomura, Kenta Honjo, Yoh Wada and Masamitsu Futai
Journal of Biological Chemistry 276 (35) 33079 (2001)
https://doi.org/10.1074/jbc.M101652200

Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death

J. A. Parker, J. B. Connolly, C. Wellington, et al.
Proceedings of the National Academy of Sciences 98 (23) 13318 (2001)
https://doi.org/10.1073/pnas.231476398

A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction

Pawel Pasierbek, Michael Jantsch, Martin Melcher, Alexander Schleiffer, Dieter Schweizer and Josef Loidl
Genes & Development 15 (11) 1349 (2001)
https://doi.org/10.1101/gad.192701

Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans

M. Jiang, J. Ryu, M. Kiraly, et al.
Proceedings of the National Academy of Sciences 98 (1) 218 (2001)
https://doi.org/10.1073/pnas.98.1.218

Mitochondrial Expression and Function of GAS-1 inCaenorhabditis elegans

Ernst-Bernhard Kayser, Phil G. Morgan, Charles L. Hoppel and Margaret M. Sedensky
Journal of Biological Chemistry 276 (23) 20551 (2001)
https://doi.org/10.1074/jbc.M011066200

The Nc1/Endostatin Domain ofCaenorhabditis elegansType Xviii Collagen Affects Cell Migration and Axon Guidance

Brian D. Ackley, Jennifer R. Crew, Harri Elamaa, et al.
The Journal of Cell Biology 152 (6) 1219 (2001)
https://doi.org/10.1083/jcb.152.6.1219

Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing

A. Aballay and F. M. Ausubel
Proceedings of the National Academy of Sciences 98 (5) 2735 (2001)
https://doi.org/10.1073/pnas.041613098

TheCaenorhabditis elegans unc-78Gene Encodes a Homologue of Actin-Interacting Protein 1 Required for Organized Assembly of Muscle Actin Filaments

Shoichiro Ono
The Journal of Cell Biology 152 (6) 1313 (2001)
https://doi.org/10.1083/jcb.152.6.1313

Roles for βpat-3 Integrins in Development and Function ofCaenorhabditis elegansMuscles and Gonads

Myeongwoo Lee, Erin J. Cram, Bing Shen and Jean E. Schwarzbauer
Journal of Biological Chemistry 276 (39) 36404 (2001)
https://doi.org/10.1074/jbc.M105795200

A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF-  signaling

K. Morita, M. Shimizu, H. Shibuya and N. Ueno
Proceedings of the National Academy of Sciences 98 (11) 6284 (2001)
https://doi.org/10.1073/pnas.111409798

Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans

E. L. Peckol, E. R. Troemel and C. I. Bargmann
Proceedings of the National Academy of Sciences 98 (20) 11032 (2001)
https://doi.org/10.1073/pnas.191352498

The Sarco-Endoplasmic Reticulum Ca2+ATPase Is Required for Development and Muscle Function inCaenorhabditis elegans

Richard R. Zwaal, Kurt Van Baelen, José T. M. Groenen, et al.
Journal of Biological Chemistry 276 (47) 43557 (2001)
https://doi.org/10.1074/jbc.M104693200

The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia

H. Jiang, R. Guo and J. A. Powell-Coffman
Proceedings of the National Academy of Sciences 98 (14) 7916 (2001)
https://doi.org/10.1073/pnas.141234698

PS1 N- and C-terminal fragments form a complex that functions in APP processing and Notch signaling

D. Levitan, J. Lee, L. Song, et al.
Proceedings of the National Academy of Sciences 98 (21) 12186 (2001)
https://doi.org/10.1073/pnas.211321898

Enantiospecificity of Cholesterol Functionin Vivo

C. Michael Crowder, Emily J. Westover, A. Sampath Kumar, Richard E. Ostlund and Douglas F. Covey
Journal of Biological Chemistry 276 (48) 44369 (2001)
https://doi.org/10.1074/jbc.C100535200

Analysis of Point Mutants in theCaenorhabditis elegansVesicular Acetylcholine Transporter Reveals Domains Involved in Substrate Translocation

Heming Zhu, Janet S. Duerr, Hélène Varoqui, et al.
Journal of Biological Chemistry 276 (45) 41580 (2001)
https://doi.org/10.1074/jbc.M103550200

Netrin Stimulates Tyrosine Phosphorylation of the UNC-5 Family of Netrin Receptors and Induces Shp2 Binding to the RCM Cytodomain

Jiefei Tong, Marie Killeen, Robert Steven, et al.
Journal of Biological Chemistry 276 (44) 40917 (2001)
https://doi.org/10.1074/jbc.M103872200

Direct Visualization of the Movement of the Monomeric Axonal Transport Motor UNC-104 along Neuronal Processes in LivingCaenorhabditis elegans

H. Mimi Zhou, Ingrid Brust-Mascher and Jonathan M. Scholey
The Journal of Neuroscience 21 (11) 3749 (2001)
https://doi.org/10.1523/JNEUROSCI.21-11-03749.2001

The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans

Trina R. Sarafi-Reinach and Piali Sengupta
Genes & Development 14 (19) 2472 (2000)
https://doi.org/10.1101/gad.832300

Mutations in β-Spectrin Disrupt Axon Outgrowth and Sarcomere Structure

Marc Hammarlund, Warren S. Davis and Erik M. Jorgensen
The Journal of Cell Biology 149 (4) 931 (2000)
https://doi.org/10.1083/jcb.149.4.931

Functional Characterization of Five eIF4E Isoforms inCaenorhabditis elegans

Brett D. Keiper, Barry J. Lamphear, Atul M. Deshpande, et al.
Journal of Biological Chemistry 275 (14) 10590 (2000)
https://doi.org/10.1074/jbc.275.14.10590

HSP25, a Small Heat Shock Protein Associated with Dense Bodies and M-lines of Body Wall Muscle inCaenorhabditis elegans

Lily Ding and E. Peter M. Candido
Journal of Biological Chemistry 275 (13) 9510 (2000)
https://doi.org/10.1074/jbc.275.13.9510

ROP-1, an RNA quality-control pathway component, affects Caenorhabditis elegans dauer formation

J.-C. Labbe, J. Burgess, L. A. Rokeach and S. Hekimi
Proceedings of the National Academy of Sciences 97 (24) 13233 (2000)
https://doi.org/10.1073/pnas.230284297

NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis

Yi-Chun Wu, Gillian M. Stanfield and H. Robert Horvitz
Genes & Development 14 (5) 536 (2000)
https://doi.org/10.1101/gad.14.5.536

The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression

Erika Fröhli Hoier, William A. Mohler, Stuart K. Kim and Alex Hajnal
Genes & Development 14 (7) 874 (2000)
https://doi.org/10.1101/gad.14.7.874

MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis

Martin Srayko, Dan W. Buster, Omar A. Bazirgan, Francis J. McNally and Paul E. Mains
Genes & Development 14 (9) 1072 (2000)
https://doi.org/10.1101/gad.14.9.1072

CPEB proteins control two key steps in spermatogenesis in C. elegans

Cameron Luitjens, Maria Gallegos, Brian Kraemer, Judith Kimble and Marvin Wickens
Genes & Development 14 (20) 2596 (2000)
https://doi.org/10.1101/gad.831700

Direct protein–protein interaction between the intracellular domain of TRA-2 and the transcription factor TRA-1A modulates feminizing activity in C. elegans

David H. Lum, Patricia E. Kuwabara, David Zarkower and Andrew M. Spence
Genes & Development 14 (24) 3153 (2000)
https://doi.org/10.1101/gad.853700

In VivoStructure–Function Analyses ofCaenorhabditis elegansMEC-4, a Candidate Mechanosensory Ion Channel Subunit

Kyonsoo Hong, Itzhak Mano and Monica Driscoll
The Journal of Neuroscience 20 (7) 2575 (2000)
https://doi.org/10.1523/JNEUROSCI.20-07-02575.2000

Mutations of theCaenorhabditis elegansBrain-Specific Inorganic Phosphate Transportereat-4Affect Habituation of the Tap–Withdrawal Response without Affecting the Response Itself

Catharine H. Rankin and Stephen R. Wicks
The Journal of Neuroscience 20 (11) 4337 (2000)
https://doi.org/10.1523/JNEUROSCI.20-11-04337.2000

Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans

S. H. Satyal, E. Schmidt, K. Kitagawa, et al.
Proceedings of the National Academy of Sciences 97 (11) 5750 (2000)
https://doi.org/10.1073/pnas.100107297

Prolyl 4-hydroxylase is required for viability and morphogenesis in Caenorhabditis elegans

L. Friedman, J. J. Higgin, G. Moulder, et al.
Proceedings of the National Academy of Sciences 97 (9) 4736 (2000)
https://doi.org/10.1073/pnas.97.9.4736

Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes

K. Van Auken, D. C. Weaver, L. G. Edgar and W. B. Wood
Proceedings of the National Academy of Sciences 97 (9) 4499 (2000)
https://doi.org/10.1073/pnas.97.9.4499

SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans

T. G. Doyle, C. Wen and I. Greenwald
Proceedings of the National Academy of Sciences 97 (14) 7877 (2000)
https://doi.org/10.1073/pnas.97.14.7877

spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditiselegans, is a member of the SET protein subfamily

C. Wen, D. Levitan, X. Li and I. Greenwald
Proceedings of the National Academy of Sciences 97 (26) 14524 (2000)
https://doi.org/10.1073/pnas.011446498

Metaphase to Anaphase (mat) Transition–Defective Mutants inCaenorhabditis elegans

Andy Golden, Penny L. Sadler, Matthew R. Wallenfang, et al.
The Journal of Cell Biology 151 (7) 1469 (2000)
https://doi.org/10.1083/jcb.151.7.1469

Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling

Todd W. Harris, Erika Hartwieg, H. Robert Horvitz and Erik M. Jorgensen
The Journal of Cell Biology 150 (3) 589 (2000)
https://doi.org/10.1083/jcb.150.3.589

The Mechanism of Ran Import into the Nucleus by Nuclear Transport Factor 2

B. Booth Quimby, Todd Lamitina, Steven W. L'Hernault and Anita H. Corbett
Journal of Biological Chemistry 275 (37) 28575 (2000)
https://doi.org/10.1074/jbc.M005055200