Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Allele-Specific Suppressors of lin-1(R175Opal) Identify Functions of MOC-3 and DPH-3 in tRNA Modification Complexes in Caenorhabditis elegans

Sunhong Kim, Wade Johnson, Changchun Chen, et al.
Genetics 185 (4) 1235 (2010)
https://doi.org/10.1534/genetics.110.118406

Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling

Meredith J. Ezak, Elizabeth Hong, Angela Chaparro-Garcia and Denise M. Ferkey
Genetics 185 (1) 233 (2010)
https://doi.org/10.1534/genetics.110.115188

New Tools for Investigating the Comparative Biology of Caenorhabditisbriggsae and C. elegans

Zhongying Zhao, Stephane Flibotte, John I. Murray, et al.
Genetics 184 (3) 853 (2010)
https://doi.org/10.1534/genetics.109.110270

Specific α- and β-Tubulin Isotypes Optimize the Functions of Sensory Cilia in Caenorhabditis elegans

Daryl D. Hurd, Renee M. Miller, Lizbeth Núñez and Douglas S. Portman
Genetics 185 (3) 883 (2010)
https://doi.org/10.1534/genetics.110.116996

Decreased Energy Metabolism Extends Life Span in Caenorhabditis elegans Without Reducing Oxidative Damage

Jeremy Michael Van Raamsdonk, Yan Meng, Darius Camp, et al.
Genetics 185 (2) 559 (2010)
https://doi.org/10.1534/genetics.110.115378

Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport inCaenorhabditis elegans

Sebiha Cevik, Yuji Hori, Oktay I. Kaplan, et al.
The Journal of Cell Biology 188 (6) 953 (2010)
https://doi.org/10.1083/jcb.200908133

Reversal of Salt Preference Is Directed by the Insulin/PI3K and Gq/PKC Signaling in Caenorhabditis elegans

Takeshi Adachi, Hirofumi Kunitomo, Masahiro Tomioka, et al.
Genetics 186 (4) 1309 (2010)
https://doi.org/10.1534/genetics.110.119768

Genetics of Extracellular Matrix Remodeling During Organ Growth Using the Caenorhabditis elegans Pharynx Model

Gholamali Jafari, Jan Burghoorn, Takehiro Kawano, et al.
Genetics 186 (3) 969 (2010)
https://doi.org/10.1534/genetics.110.120519

A Genetic Survey of Fluoxetine Action on Synaptic Transmission in Caenorhabditis elegans

Andrey Kullyev, Catherine M. Dempsey, Sarah Miller, et al.
Genetics 186 (3) 929 (2010)
https://doi.org/10.1534/genetics.110.118877

Caenorhabditis elegans Fibroblast Growth Factor Receptor Signaling Can Occur Independently of the Multi-Substrate Adaptor FRS2

Te-Wen Lo, Daniel C. Bennett, S. Jay Goodman and Michael J. Stern
Genetics 185 (2) 537 (2010)
https://doi.org/10.1534/genetics.109.113373

Analysis of Multiple Ethyl Methanesulfonate-Mutagenized Caenorhabditis elegans Strains by Whole-Genome Sequencing

Sumeet Sarin, Vincent Bertrand, Henry Bigelow, et al.
Genetics 185 (2) 417 (2010)
https://doi.org/10.1534/genetics.110.116319

The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span

S. Chen, J. R. Whetstine, S. Ghosh, et al.
Proceedings of the National Academy of Sciences 106 (5) 1496 (2009)
https://doi.org/10.1073/pnas.0802674106

LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans

Shamol Saha, Maria D. Guillily, Andrew Ferree, Joel Lanceta, Diane Chan, Joy Ghosh, Cindy H. Hsu, Lilach Segal, Kesav Raghavan, Kunihiro Matsumoto, Naoki Hisamoto, Tomoki Kuwahara, Takeshi Iwatsubo, Landon Moore, Lee Goldstein, Mark Cookson and Benjamin Wolozin
The Journal of Neuroscience 29 (29) 9210 (2009)
https://doi.org/10.1523/JNEUROSCI.2281-09.2009

Dual Excitatory and Inhibitory Serotonergic Inputs Modulate Egg Laying in Caenorhabditis elegans

Vera M. Hapiak, Robert J. Hobson, Lindsay Hughes, et al.
Genetics 181 (1) 153 (2009)
https://doi.org/10.1534/genetics.108.096891

Alternative Induction of Meiotic Recombination From Single-Base Lesions of DNA Deaminases

Siim Pauklin, Julia S. Burkert, Julie Martin, et al.
Genetics 182 (1) 41 (2009)
https://doi.org/10.1534/genetics.109.101683

GPC-1, a G Protein γ-Subunit, Regulates Olfactory Adaptation in Caenorhabditis elegans

Koji Yamada, Takaaki Hirotsu, Masahiro Matsuki, Hirofumi Kunitomo and Yuichi Iino
Genetics 181 (4) 1347 (2009)
https://doi.org/10.1534/genetics.108.099002

Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools

K. Sato, G. G. Ernstrom, S. Watanabe, et al.
Proceedings of the National Academy of Sciences 106 (4) 1139 (2009)
https://doi.org/10.1073/pnas.0809541106

The BCL-2–like protein CED-9 ofC. eleganspromotes FZO-1/Mfn1,2– and EAT-3/Opa1–dependent mitochondrial fusion

Stéphane G. Rolland, Yun Lu, Charles N. David and Barbara Conradt
The Journal of Cell Biology 186 (4) 525 (2009)
https://doi.org/10.1083/jcb.200905070

Stimulation of Movement in a Quiescent, Hibernation-Like Form ofCaenorhabditis elegansby Dopamine Signaling

Marta Maria Gaglia and Cynthia Kenyon
The Journal of Neuroscience 29 (22) 7302 (2009)
https://doi.org/10.1523/JNEUROSCI.3429-08.2009

Three Distinct Amine Receptors Operating at Different Levels within the Locomotory Circuit Are Each Essential for the Serotonergic Modulation of Chemosensation inCaenorhabditis elegans

Gareth P. Harris, Vera M. Hapiak, Rachel T. Wragg, Sarah B. Miller, Lindsay J. Hughes, Robert J. Hobson, Robert Steven, Bruce Bamber and Richard W. Komuniecki
The Journal of Neuroscience 29 (5) 1446 (2009)
https://doi.org/10.1523/JNEUROSCI.4585-08.2009

The Cation Diffusion Facilitator Gene cdf-2 Mediates Zinc Metabolism in Caenorhabditis elegans

Diana E. Davis, Hyun Cheol Roh, Krupa Deshmukh, et al.
Genetics 182 (4) 1015 (2009)
https://doi.org/10.1534/genetics.109.103614

A “latent niche” mechanism for tumor initiation

Marie McGovern, Roumen Voutev, John Maciejowski, Ann K. Corsi and E. Jane Albert Hubbard
Proceedings of the National Academy of Sciences 106 (28) 11617 (2009)
https://doi.org/10.1073/pnas.0903768106

A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans

Dustin L. Updike and Susan Strome
Genetics 183 (4) 1397 (2009)
https://doi.org/10.1534/genetics.109.110171

An eIF4E-binding protein regulates katanin protein levels inC. elegansembryos

Wei Li, Leah R. DeBella, Tugba Guven-Ozkan, Rueyling Lin and Lesilee S. Rose
The Journal of Cell Biology 187 (1) 33 (2009)
https://doi.org/10.1083/jcb.200903003

Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning

Thouis R. Jones, Anne E. Carpenter, Michael R. Lamprecht, et al.
Proceedings of the National Academy of Sciences 106 (6) 1826 (2009)
https://doi.org/10.1073/pnas.0808843106

FBF and Its Dual Control of gld-1 Expression in the Caenorhabditis elegans Germline

Nayoung Suh, Sarah L. Crittenden, Aaron Goldstrohm, et al.
Genetics 181 (4) 1249 (2009)
https://doi.org/10.1534/genetics.108.099440

Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase

A. Tong, G. Lynn, V. Ngo, et al.
Proceedings of the National Academy of Sciences 106 (5) 1457 (2009)
https://doi.org/10.1073/pnas.0809339106

High Nucleotide Divergence in Developmental Regulatory Genes Contrasts With the Structural Elements of Olfactory Pathways in Caenorhabditis

Richard Jovelin, Joseph P. Dunham, Frances S. Sung and Patrick C. Phillips
Genetics 181 (4) 1387 (2009)
https://doi.org/10.1534/genetics.107.082651

The Small, Secreted Immunoglobulin Protein ZIG-3 Maintains Axon Position in Caenorhabditis elegans

Claire Bénard, Nartono Tjoe, Thomas Boulin, Janine Recio and Oliver Hobert
Genetics 183 (3) 917 (2009)
https://doi.org/10.1534/genetics.109.107441

Two Distinct Roles for EGL-9 in the Regulation of HIF-1-Mediated Gene Expression in Caenorhabditis elegans

Zhiyong Shao, Yi Zhang and Jo Anne Powell-Coffman
Genetics 183 (3) 821 (2009)
https://doi.org/10.1534/genetics.109.107284

Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes

Antoine Barrière, Shiaw-Pyng Yang, Elizabeth Pekarek, Cristel G. Thomas, Eric S. Haag and Ilya Ruvinsky
Genome Research 19 (3) 470 (2009)
https://doi.org/10.1101/gr.081851.108

Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1

A. M. Jose, J. J. Smith and C. P. Hunter
Proceedings of the National Academy of Sciences 106 (7) 2283 (2009)
https://doi.org/10.1073/pnas.0809760106

Effects of overexpression of Huntingtin proteins on mitochondrial integrity

H. Wang, P. J. Lim, M. Karbowski and M. J. Monteiro
Human Molecular Genetics 18 (4) 737 (2009)
https://doi.org/10.1093/hmg/ddn404

The Role of Protein Phosphatase 4 in Regulating Microtubule Severing in the Caenorhabditis elegans Embryo

Xue Han, José-Eduardo Gomes, Cheryl L. Birmingham, et al.
Genetics 181 (3) 933 (2009)
https://doi.org/10.1534/genetics.108.096016

Worms With a Single Functional Sensory Cilium Generate Proper Neuron-Specific Behavioral Output

Gabriele Senti, Marina Ezcurra, Jana Löbner, William R. Schafer and Peter Swoboda
Genetics 183 (2) 595 (2009)
https://doi.org/10.1534/genetics.109.105171

METT-10, A Putative Methyltransferase, Inhibits Germ Cell Proliferative Fate in Caenorhabditis elegans

Maia Dorsett, Bethany Westlund and Tim Schedl
Genetics 183 (1) 233 (2009)
https://doi.org/10.1534/genetics.109.105270

A ZYG-12–dynein interaction at the nuclear envelope defines cytoskeletal architecture in theC. elegansgonad

Kang Zhou, Melissa M. Rolls, David H. Hall, Christian J. Malone and Wendy Hanna-Rose
The Journal of Cell Biology 186 (2) 229 (2009)
https://doi.org/10.1083/jcb.200902101

Intraflagellar Transport/Hedgehog-Related Signaling Components Couple Sensory Cilium Morphology and Serotonin Biosynthesis inCaenorhabditis elegans

Mustapha Moussaif and Ji Ying Sze
The Journal of Neuroscience 29 (13) 4065 (2009)
https://doi.org/10.1523/JNEUROSCI.0044-09.2009

UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation inCaenorhabditis elegans

Marija Sumakovic, Jan Hegermann, Ling Luo, et al.
The Journal of Cell Biology 186 (6) 897 (2009)
https://doi.org/10.1083/jcb.200902096

The Caenorhabditis elegans ing-3 Gene Regulates Ionizing Radiation-Induced Germ-Cell Apoptosis in a p53-Associated Pathway

Jingjing Luo, Sitar Shah, Karl Riabowol and Paul E. Mains
Genetics 181 (2) 473 (2009)
https://doi.org/10.1534/genetics.107.080515

Toxicity Studies on Depleted Uranium in Primary Rat Cortical Neurons and inCaenorhabditis Elegans:What Have We Learned?

Michael Aschner and George C-T. Jiang
Journal of Toxicology and Environmental Health, Part B 12 (7) 525 (2009)
https://doi.org/10.1080/10937400903358942

Asymmetric enrichment of PIE-1 in theCaenorhabditis eleganszygote mediated by binary counterdiffusion

Brian R. Daniels, Edward M. Perkins, Terrence M. Dobrowsky, Sean X. Sun and Denis Wirtz
The Journal of Cell Biology 184 (4) 473 (2009)
https://doi.org/10.1083/jcb.200809077

gem-1 Encodes an SLC16 Monocarboxylate Transporter-Related Protein That Functions in Parallel to the gon-2 TRPM Channel During Gonad Development in Caenorhabditis elegans

Benedict J. Kemp, Diane L. Church, Julia Hatzold, Barbara Conradt and Eric J. Lambie
Genetics 181 (2) 581 (2009)
https://doi.org/10.1534/genetics.108.094870

Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans

K. Sharabi, A. Hurwitz, A. J. Simon, et al.
Proceedings of the National Academy of Sciences 106 (10) 4024 (2009)
https://doi.org/10.1073/pnas.0900309106

mec-15 Encodes an F-Box Protein Required for Touch Receptor Neuron Mechanosensation, Synapse Formation and Development

Alexander Bounoutas, Qun Zheng, Michael L. Nonet and Martin Chalfie
Genetics 183 (2) 607 (2009)
https://doi.org/10.1534/genetics.109.105726

Transcriptional regulation and stabilization of left–right neuronal identity in C. elegans

Bluma J. Lesch, Andrew R. Gehrke, Martha L. Bulyk and Cornelia I. Bargmann
Genes & Development 23 (3) 345 (2009)
https://doi.org/10.1101/gad.1763509

Systematic Identification of Gene Activities Promoting Hypoxic Death

Meghann E. Mabon, Xianrong Mao, York Jiao, Barbara A. Scott and C. Michael Crowder
Genetics 181 (2) 483 (2009)
https://doi.org/10.1534/genetics.108.097188

The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation

Aaron F. Severson, Lorraine Ling, Vanessa van Zuylen and Barbara J. Meyer
Genes & Development 23 (15) 1763 (2009)
https://doi.org/10.1101/gad.1808809

Caenorhabditis elegansInnexins Regulate Active Zone Differentiation

Edward Yeh, Taizo Kawano, Sharon Ng, Richard Fetter, Wesley Hung, Ying Wang and Mei Zhen
The Journal of Neuroscience 29 (16) 5207 (2009)
https://doi.org/10.1523/JNEUROSCI.0637-09.2009

Using RNA Interference to Identify Specific Modifiers of a Temperature-Sensitive, Embryonic-Lethal Mutation in the Caenorhabditis elegans Ubiquitin-Like Nedd8 Protein Modification Pathway E1-Activating Gene rfl-1

Marc Dorfman, José-Eduardo Gomes, Sean O'Rourke and Bruce Bowerman
Genetics 182 (4) 1035 (2009)
https://doi.org/10.1534/genetics.109.104885

The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans

Jessica E. Tanis, Andrew Bellemer, James J. Moresco, Biff Forbush and Michael R. Koelle
The Journal of Neuroscience 29 (32) 9943 (2009)
https://doi.org/10.1523/JNEUROSCI.1989-09.2009

The Neural Network for Chemotaxis to Tastants in Caenorhabditis elegans Is Specialized for Temporal Differentiation

Tod R. Thiele, Serge Faumont and Shawn R. Lockery
The Journal of Neuroscience 29 (38) 11904 (2009)
https://doi.org/10.1523/JNEUROSCI.0594-09.2009

Regulation of Caenorhabditis elegans Male Mate Searching Behavior by the Nuclear Receptor DAF-12

Gunnar Kleemann, Lingyun Jia and Scott W. Emmons
Genetics 180 (4) 2111 (2008)
https://doi.org/10.1534/genetics.108.093773

CLEC-38, A Transmembrane Protein with C-Type Lectin-Like Domains, Negatively Regulates UNC-40-Mediated Axon Outgrowth and Promotes Presynaptic Development inCaenorhabditis elegans

Gauri Kulkarni, Haichang Li and William G. Wadsworth
The Journal of Neuroscience 28 (17) 4541 (2008)
https://doi.org/10.1523/JNEUROSCI.5542-07.2008

Behavioral Impact of Neurotransmitter-Activated G-Protein-Coupled Receptors: Muscarinic and GABABReceptors RegulateCaenorhabditis elegansLocomotion

Jeremy S. Dittman and Joshua M. Kaplan
The Journal of Neuroscience 28 (28) 7104 (2008)
https://doi.org/10.1523/JNEUROSCI.0378-08.2008

Hereditary Spastic Paraplegia-Associated Mutations in theNIPA1Gene and ItsCaenorhabditis elegansHomolog Trigger Neural DegenerationIn VitroandIn Vivothrough a Gain-of-Function Mechanism

Jiali Zhao, Dawn S. Matthies, Emmanuel J. Botzolakis, Robert L. Macdonald, Randy D. Blakely and Peter Hedera
The Journal of Neuroscience 28 (51) 13938 (2008)
https://doi.org/10.1523/JNEUROSCI.4668-08.2008

Domain-Specific Regulation of Recombination in Caenorhabditis elegans in Response to Temperature, Age and Sex

Jaclyn G. Y. Lim, Rachel R. W. Stine and Judith L. Yanowitz
Genetics 180 (2) 715 (2008)
https://doi.org/10.1534/genetics.108.090142

ADBP-1 Regulates an ADAR RNA-Editing Enzyme to Antagonize RNA-Interference-Mediated Gene Silencing in Caenorhabditis elegans

Hiromitsu Ohta, Manabi Fujiwara, Yasumi Ohshima and Takeshi Ishihara
Genetics 180 (2) 785 (2008)
https://doi.org/10.1534/genetics.108.093310

The T-Box Gene tbx-2, the Homeobox Gene egl-5 and the Asymmetric Cell Division Gene ham-1 Specify Neural Fate in the HSN/PHB Lineage

Aakanksha Singhvi, C. Andrew Frank and Gian Garriga
Genetics 179 (2) 887 (2008)
https://doi.org/10.1534/genetics.108.088948

Caenorhabditis elegans Genes Required for the Engulfment of Apoptotic Corpses Function in the Cytotoxic Cell Deaths Induced by Mutations in lin-24 and lin-33

Brendan D. Galvin, Saechin Kim and H. Robert Horvitz
Genetics 179 (1) 403 (2008)
https://doi.org/10.1534/genetics.108.087221

unc-44 Ankyrin and stn-2 γ-Syntrophin Regulate sax-7 L1CAM Function in Maintaining Neuronal Positioning in Caenorhabditis elegans

Shan Zhou, Karla Opperman, Xuelin Wang and Lihsia Chen
Genetics 180 (3) 1429 (2008)
https://doi.org/10.1534/genetics.108.091272

The EGL-4 PKG Acts With KIN-29 Salt-Inducible Kinase and Protein Kinase A to Regulate Chemoreceptor Gene Expression and Sensory Behaviors in Caenorhabditis elegans

Alexander M. van der Linden, Scott Wiener, Young-jai You, et al.
Genetics 180 (3) 1475 (2008)
https://doi.org/10.1534/genetics.108.094771

Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity

Natalia J. Martinez, Maria C. Ow, John S. Reece-Hoyes, M. Inmaculada Barrasa, Victor R. Ambros and Albertha J.M. Walhout
Genome Research 18 (12) 2005 (2008)
https://doi.org/10.1101/gr.083055.108

Thermotaxis is a Robust Mechanism for Thermoregulation inCaenorhabditis elegansNematodes

Daniel Ramot, Bronwyn L. MacInnis, Hau-Chen Lee and Miriam B. Goodman
The Journal of Neuroscience 28 (47) 12546 (2008)
https://doi.org/10.1523/JNEUROSCI.2857-08.2008

Maternal mRNAs are regulated by diverse P body–related mRNP granules during earlyCaenorhabditis elegansdevelopment

Scott L. Noble, Brittany L. Allen, Lai Kuan Goh, Kristen Nordick and Thomas C. Evans
The Journal of Cell Biology 182 (3) 559 (2008)
https://doi.org/10.1083/jcb.200802128

Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor

T. Boulin, M. Gielen, J. E. Richmond, et al.
Proceedings of the National Academy of Sciences 105 (47) 18590 (2008)
https://doi.org/10.1073/pnas.0806933105

The Caenorhabditis elegans ekl (Enhancer of ksr-1 Lethality) Genes Include Putative Components of a Germline Small RNA Pathway

Christian E. Rocheleau, Kevin Cullison, Kai Huang, et al.
Genetics 178 (3) 1431 (2008)
https://doi.org/10.1534/genetics.107.084608

A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes

S. Hellwig and B. L. Bass
Proceedings of the National Academy of Sciences 105 (35) 12897 (2008)
https://doi.org/10.1073/pnas.0805118105

The Arp2/3 Activators WAVE and WASP Have Distinct Genetic Interactions With Rac GTPases in Caenorhabditis elegans Axon Guidance

M. Afaq Shakir, Ke Jiang, Eric C. Struckhoff, et al.
Genetics 179 (4) 1957 (2008)
https://doi.org/10.1534/genetics.108.088963

Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model

S. Hamamichi, R. N. Rivas, A. L. Knight, et al.
Proceedings of the National Academy of Sciences 105 (2) 728 (2008)
https://doi.org/10.1073/pnas.0711018105

cin-4, a Gene With Homology to Topoisomerase II, Is Required for Centromere Resolution by Cohesin Removal From Sister Kinetochores During Mitosis

Gerald Stanvitch and Landon L. Moore
Genetics 178 (1) 83 (2008)
https://doi.org/10.1534/genetics.107.075275

Regulation of Serotonin Biosynthesis by the G Proteins Gαo and Gαq Controls Serotonin Signaling in Caenorhabditis elegans

Jessica E. Tanis, James J. Moresco, Robert A. Lindquist and Michael R. Koelle
Genetics 178 (1) 157 (2008)
https://doi.org/10.1534/genetics.107.079780

STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo

Genta Ohno, Masatoshi Hagiwara and Hidehito Kuroyanagi
Genes & Development 22 (3) 360 (2008)
https://doi.org/10.1101/gad.1620608

LAB-1 antagonizes the Aurora B kinase in C. elegans

Carlos Egydio de Carvalho, Sophie Zaaijer, Sarit Smolikov, Yanjie Gu, Jill M. Schumacher and Monica P. Colaiácovo
Genes & Development 22 (20) 2869 (2008)
https://doi.org/10.1101/gad.1691208

CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning inCaenorhabditis elegans

Daisuke D. Ikeda, Yukan Duan, Masahiro Matsuki, et al.
Proceedings of the National Academy of Sciences 105 (13) 5260 (2008)
https://doi.org/10.1073/pnas.0711894105

PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25

David M. Rivers, Sergio Moreno, Mary Abraham and Julie Ahringer
The Journal of Cell Biology 180 (5) 877 (2008)
https://doi.org/10.1083/jcb.200710018

The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans

Maria C. Ow, Natalia J. Martinez, Philip H. Olsen, Howard S. Silverman, M. Inmaculada Barrasa, Barbara Conradt, Albertha J.M. Walhout and Victor Ambros
Genes & Development 22 (18) 2520 (2008)
https://doi.org/10.1101/gad.1678808

Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion

Enrique Martinez-Perez, Mara Schvarzstein, Consuelo Barroso, James Lightfoot, Abby F. Dernburg and Anne M. Villeneuve
Genes & Development 22 (20) 2886 (2008)
https://doi.org/10.1101/gad.1694108

Genetic analysis of crawling and swimming locomotory patterns in C. elegans

J. T. Pierce-Shimomura, B. L. Chen, J. J. Mun, et al.
Proceedings of the National Academy of Sciences 105 (52) 20982 (2008)
https://doi.org/10.1073/pnas.0810359105

Control of feeding behavior in C. elegans by human G protein-coupled receptors permits screening for agonist-expressing bacteria

M. S. Teng, P. Shadbolt, A. G. Fraser, G. Jansen and J. McCafferty
Proceedings of the National Academy of Sciences 105 (39) 14826 (2008)
https://doi.org/10.1073/pnas.0803290105

Highly Ca2+-selective TRPM Channels Regulate IP3-dependent Oscillatory Ca2+Signaling in theC. elegansIntestine

Juan Xing, Xiaohui Yan, Ana Estevez and Kevin Strange
The Journal of General Physiology 131 (3) 245 (2008)
https://doi.org/10.1085/jgp.200709914

Identification of Mutations in Caenorhabditis elegans That Cause Resistance to High Levels of Dietary Zinc and Analysis Using a Genomewide Map of Single Nucleotide Polymorphisms Scored by Pyrosequencing

Janelle J. Bruinsma, Daniel L. Schneider, Diana E. Davis and Kerry Kornfeld
Genetics 179 (2) 811 (2008)
https://doi.org/10.1534/genetics.107.084384

MIG-17/ADAMTS controls cell migration by recruiting nidogen to the basement membrane in C. elegans

Y. Kubota, K. Ohkura, K. K. Tamai, K. Nagata and K. Nishiwaki
Proceedings of the National Academy of Sciences 105 (52) 20804 (2008)
https://doi.org/10.1073/pnas.0804055106

The small GTPase Rab2 functions in the removal of apoptotic cells inCaenorhabditis elegans

Paolo M. Mangahas, Xiaomeng Yu, Kenneth G. Miller and Zheng Zhou
The Journal of Cell Biology 180 (2) 357 (2008)
https://doi.org/10.1083/jcb.200708130

Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans

A. J. Chang and C. I. Bargmann
Proceedings of the National Academy of Sciences 105 (20) 7321 (2008)
https://doi.org/10.1073/pnas.0802164105

Suppressors of the cdc-25.1(gf)-associated intestinal hyperplasia reveal important maternal roles for prp-8 and a subset of splicing factors in C. elegans

Michaël Hebeisen, John Drysdale and Richard Roy
RNA 14 (12) 2618 (2008)
https://doi.org/10.1261/rna.1168408

C. elegans and H. sapiens mRNAs with edited 3′ UTRs are present on polysomes

Heather A. Hundley, Ammie A. Krauchuk and Brenda L. Bass
RNA 14 (10) 2050 (2008)
https://doi.org/10.1261/rna.1165008

Wnt signaling in Pristionchus pacificus gonadal arm extension and the evolution of organ shape

D. Rudel, H. Tian and R. J. Sommer
Proceedings of the National Academy of Sciences 105 (31) 10826 (2008)
https://doi.org/10.1073/pnas.0800597105

DAF-16-Dependent Suppression of Immunity During Reproduction in Caenorhabditis elegans

Sachiko Miyata, Jakob Begun, Emily R. Troemel and Frederick M. Ausubel
Genetics 178 (2) 903 (2008)
https://doi.org/10.1534/genetics.107.083923

Complex Network of Wnt Signaling Regulates Neuronal Migrations During Caenorhabditis elegans Development

Anna Y. Zinovyeva, Yuko Yamamoto, Hitoshi Sawa and Wayne C. Forrester
Genetics 179 (3) 1357 (2008)
https://doi.org/10.1534/genetics.108.090290