La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans
Shamol Saha, Maria D. Guillily, Andrew Ferree, Joel Lanceta, Diane Chan, Joy Ghosh, Cindy H. Hsu, Lilach Segal, Kesav Raghavan, Kunihiro Matsumoto, Naoki Hisamoto, Tomoki Kuwahara, Takeshi Iwatsubo, Landon Moore, Lee Goldstein, Mark Cookson and Benjamin Wolozin The Journal of Neuroscience 29(29) 9210 (2009) https://doi.org/10.1523/JNEUROSCI.2281-09.2009
Dual Excitatory and Inhibitory Serotonergic Inputs Modulate Egg Laying in Caenorhabditis elegans
Three Distinct Amine Receptors Operating at Different Levels within the Locomotory Circuit Are Each Essential for the Serotonergic Modulation of Chemosensation inCaenorhabditis elegans
Gareth P. Harris, Vera M. Hapiak, Rachel T. Wragg, Sarah B. Miller, Lindsay J. Hughes, Robert J. Hobson, Robert Steven, Bruce Bamber and Richard W. Komuniecki The Journal of Neuroscience 29(5) 1446 (2009) https://doi.org/10.1523/JNEUROSCI.4585-08.2009
The Cation Diffusion Facilitator Gene cdf-2 Mediates Zinc Metabolism in Caenorhabditis elegans
Marie McGovern, Roumen Voutev, John Maciejowski, Ann K. Corsi and E. Jane Albert Hubbard Proceedings of the National Academy of Sciences 106(28) 11617 (2009) https://doi.org/10.1073/pnas.0903768106
A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans
An eIF4E-binding protein regulates katanin protein levels inC. elegansembryos
Wei Li, Leah R. DeBella, Tugba Guven-Ozkan, Rueyling Lin and Lesilee S. Rose The Journal of Cell Biology 187(1) 33 (2009) https://doi.org/10.1083/jcb.200903003
Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
Thouis R. Jones, Anne E. Carpenter, Michael R. Lamprecht, et al. Proceedings of the National Academy of Sciences 106(6) 1826 (2009) https://doi.org/10.1073/pnas.0808843106
Parallel Use of Two Behavioral Mechanisms for Chemotaxis inCaenorhabditis elegans
Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes
Antoine Barrière, Shiaw-Pyng Yang, Elizabeth Pekarek, Cristel G. Thomas, Eric S. Haag and Ilya Ruvinsky Genome Research 19(3) 470 (2009) https://doi.org/10.1101/gr.081851.108
Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1
A ZYG-12–dynein interaction at the nuclear envelope defines cytoskeletal architecture in theC. elegansgonad
Kang Zhou, Melissa M. Rolls, David H. Hall, Christian J. Malone and Wendy Hanna-Rose The Journal of Cell Biology 186(2) 229 (2009) https://doi.org/10.1083/jcb.200902101
Asymmetric enrichment of PIE-1 in theCaenorhabditis eleganszygote mediated by binary counterdiffusion
Brian R. Daniels, Edward M. Perkins, Terrence M. Dobrowsky, Sean X. Sun and Denis Wirtz The Journal of Cell Biology 184(4) 473 (2009) https://doi.org/10.1083/jcb.200809077
gem-1 Encodes an SLC16 Monocarboxylate Transporter-Related Protein That Functions in Parallel to the gon-2 TRPM Channel During Gonad Development in Caenorhabditis elegans
The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation
Aaron F. Severson, Lorraine Ling, Vanessa van Zuylen and Barbara J. Meyer Genes & Development 23(15) 1763 (2009) https://doi.org/10.1101/gad.1808809
Caenorhabditis elegansInnexins Regulate Active Zone Differentiation
Using RNA Interference to Identify Specific Modifiers of a Temperature-Sensitive, Embryonic-Lethal Mutation in the Caenorhabditis elegans Ubiquitin-Like Nedd8 Protein Modification Pathway E1-Activating Gene rfl-1
CLEC-38, A Transmembrane Protein with C-Type Lectin-Like Domains, Negatively Regulates UNC-40-Mediated Axon Outgrowth and Promotes Presynaptic Development inCaenorhabditis elegans
Hereditary Spastic Paraplegia-Associated Mutations in theNIPA1Gene and ItsCaenorhabditis elegansHomolog Trigger Neural DegenerationIn VitroandIn Vivothrough a Gain-of-Function Mechanism
Jiali Zhao, Dawn S. Matthies, Emmanuel J. Botzolakis, Robert L. Macdonald, Randy D. Blakely and Peter Hedera The Journal of Neuroscience 28(51) 13938 (2008) https://doi.org/10.1523/JNEUROSCI.4668-08.2008
Caenorhabditis elegans Genes Required for the Engulfment of Apoptotic Corpses Function in the Cytotoxic Cell Deaths Induced by Mutations in lin-24 and lin-33
The EGL-4 PKG Acts With KIN-29 Salt-Inducible Kinase and Protein Kinase A to Regulate Chemoreceptor Gene Expression and Sensory Behaviors in Caenorhabditis elegans
Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity
Natalia J. Martinez, Maria C. Ow, John S. Reece-Hoyes, M. Inmaculada Barrasa, Victor R. Ambros and Albertha J.M. Walhout Genome Research 18(12) 2005 (2008) https://doi.org/10.1101/gr.083055.108
Thermotaxis is a Robust Mechanism for Thermoregulation inCaenorhabditis elegansNematodes
Maternal mRNAs are regulated by diverse P body–related mRNP granules during earlyCaenorhabditis elegansdevelopment
Scott L. Noble, Brittany L. Allen, Lai Kuan Goh, Kristen Nordick and Thomas C. Evans The Journal of Cell Biology 182(3) 559 (2008) https://doi.org/10.1083/jcb.200802128
Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor
LAB-1 antagonizes the Aurora B kinase in C. elegans
Carlos Egydio de Carvalho, Sophie Zaaijer, Sarit Smolikov, Yanjie Gu, Jill M. Schumacher and Monica P. Colaiácovo Genes & Development 22(20) 2869 (2008) https://doi.org/10.1101/gad.1691208
CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning inCaenorhabditis elegans
Daisuke D. Ikeda, Yukan Duan, Masahiro Matsuki, et al. Proceedings of the National Academy of Sciences 105(13) 5260 (2008) https://doi.org/10.1073/pnas.0711894105
PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25
The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans
Maria C. Ow, Natalia J. Martinez, Philip H. Olsen, Howard S. Silverman, M. Inmaculada Barrasa, Barbara Conradt, Albertha J.M. Walhout and Victor Ambros Genes & Development 22(18) 2520 (2008) https://doi.org/10.1101/gad.1678808
Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion
Enrique Martinez-Perez, Mara Schvarzstein, Consuelo Barroso, James Lightfoot, Abby F. Dernburg and Anne M. Villeneuve Genes & Development 22(20) 2886 (2008) https://doi.org/10.1101/gad.1694108
Genetic analysis of crawling and swimming locomotory patterns in C. elegans
J. T. Pierce-Shimomura, B. L. Chen, J. J. Mun, et al. Proceedings of the National Academy of Sciences 105(52) 20982 (2008) https://doi.org/10.1073/pnas.0810359105
Control of feeding behavior in C. elegans by human G protein-coupled receptors permits screening for agonist-expressing bacteria
M. S. Teng, P. Shadbolt, A. G. Fraser, G. Jansen and J. McCafferty Proceedings of the National Academy of Sciences 105(39) 14826 (2008) https://doi.org/10.1073/pnas.0803290105
Identification of Mutations in Caenorhabditis elegans That Cause Resistance to High Levels of Dietary Zinc and Analysis Using a Genomewide Map of Single Nucleotide Polymorphisms Scored by Pyrosequencing
MIG-17/ADAMTS controls cell migration by recruiting nidogen to the basement membrane in C. elegans
Y. Kubota, K. Ohkura, K. K. Tamai, K. Nagata and K. Nishiwaki Proceedings of the National Academy of Sciences 105(52) 20804 (2008) https://doi.org/10.1073/pnas.0804055106
The small GTPase Rab2 functions in the removal of apoptotic cells inCaenorhabditis elegans
Paolo M. Mangahas, Xiaomeng Yu, Kenneth G. Miller and Zheng Zhou The Journal of Cell Biology 180(2) 357 (2008) https://doi.org/10.1083/jcb.200708130
Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans
Suppressors of the cdc-25.1(gf)-associated intestinal hyperplasia reveal important maternal roles for prp-8 and a subset of splicing factors in C. elegans