La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Dialogue between E. coli free radical pathways and the mitochondria of C. elegans
J. Amaranath Govindan, Elamparithi Jayamani, Xinrui Zhang, Eleftherios Mylonakis and Gary Ruvkun Proceedings of the National Academy of Sciences 112(40) 12456 (2015) https://doi.org/10.1073/pnas.1517448112
Efficient Genome Editing in Caenorhabditis elegans with a Toolkit of Dual-Marker Selection Cassettes
Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development
Fei Chen, Yu Zhou, Yingchuan B. Qi, Vishal Khivansara, Hairi Li, Sang Young Chun, John K. Kim, Xiang-Dong Fu and Yishi Jin Genes & Development 29(22) 2377 (2015) https://doi.org/10.1101/gad.266650.115
Conversion of the LIN-1 ETS Protein of Caenorhabditis elegans from a SUMOylated Transcriptional Repressor to a Phosphorylated Transcriptional Activator
Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans
Deni Subasic, Anneke Brümmer, Yibo Wu, Sérgio Morgado Pinto, Jochen Imig, Martin Keller, Marko Jovanovic, Helen Louise Lightfoot, Sara Nasso, Sandra Goetze, Erich Brunner, Jonathan Hall, Ruedi Aebersold, Mihaela Zavolan and Michael O. Hengartner Genome Research 25(11) 1680 (2015) https://doi.org/10.1101/gr.183160.114
Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression
Developmental Function of the PHR Protein RPM-1 Is Required for Learning in Caenorhabditis elegans
Andrew C. Giles, Karla J. Opperman, Catharine H. Rankin and Brock Grill G3: Genes|Genomes|Genetics 5(12) 2745 (2015) https://doi.org/10.1534/g3.115.021410
A Forward Genetic Screen for Suppressors of Somatic P Granules in Caenorhabditis elegans
Ashley L. Kelly, Michael J. Senter-Zapata, Anne C. Campbell, et al. G3: Genes|Genomes|Genetics 5(10) 2209 (2015) https://doi.org/10.1534/g3.115.019257
HES-Mediated Repression of Pten in Caenorhabditis elegans
Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing
Sindhuja Devanapally, Snusha Ravikumar and Antony M. Jose Proceedings of the National Academy of Sciences 112(7) 2133 (2015) https://doi.org/10.1073/pnas.1423333112
WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly
Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans
Yushu Chen, Shashank Bharill, Ehud Y. Isacoff and Martin Chalfie Proceedings of the National Academy of Sciences 112(37) 11690 (2015) https://doi.org/10.1073/pnas.1515968112
A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans
UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons
Stabilization of Nontoxic Aβ-Oligomers: Insights into the Mechanism of Action of Hydroxyquinolines in Alzheimer's Disease
Timothy M. Ryan, Blaine R. Roberts, Gawain McColl, Dominic J. Hare, Philip A. Doble, Qiao-Xin Li, Monica Lind, Anne M. Roberts, Haydyn D. T. Mertens, Nigel Kirby, Chi L. L. Pham, Mark G. Hinds, Paul A. Adlard, Kevin J. Barnham, Cyril C. Curtain and Colin L. Masters The Journal of Neuroscience 35(7) 2871 (2015) https://doi.org/10.1523/JNEUROSCI.2912-14.2015
Distinct Mechanisms Underlie Quiescence during TwoCaenorhabditis elegansSleep-Like States
Nicholas F. Trojanowski, Matthew D. Nelson, Steven W. Flavell, Christopher Fang-Yen and David M. Raizen The Journal of Neuroscience 35(43) 14571 (2015) https://doi.org/10.1523/JNEUROSCI.1369-15.2015
The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal
Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel and Victor R. Ambros Proceedings of the National Academy of Sciences 112(38) E5271 (2015) https://doi.org/10.1073/pnas.1506576112
Loss of function mutations inHARScause a spectrum of inherited peripheral neuropathies
Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development
Arnaud Hubstenberger, Cristiana Cameron, Scott L. Noble, Sean Keenan and Thomas C. Evans The Journal of Cell Biology 211(3) 703 (2015) https://doi.org/10.1083/jcb.201504044
TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response
Conserved ion and amino acid transporters identified as phosphorylcholine-modified N-glycoproteins by metabolic labeling with propargylcholine in Caenorhabditis elegans cells
SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans
Laura D. Mathies, GinaMari G. Blackwell, Makeda K. Austin, et al. Proceedings of the National Academy of Sciences 112(10) 3032 (2015) https://doi.org/10.1073/pnas.1413451112
Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis
Ultra-structural time-course study in theC. elegansmodel for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process
Nicolas Brouilly, Claire Lecroisey, Edwige Martin, et al. Human Molecular Genetics 24(22) 6428 (2015) https://doi.org/10.1093/hmg/ddv353
The beginning of connectomics: a commentary on White et al. (1986) 'The structure of the nervous system of the nematode Caenorhabditis elegans'
A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import
M. J. W. VanGompel, K. C. Q. Nguyen, D. H. Hall, W. T. Dauer and L. S. Rose Molecular Biology of the Cell 26(9) 1752 (2015) https://doi.org/10.1091/mbc.E14-07-1239
Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span
Mintie Pu, Zhuoyu Ni, Minghui Wang, Xiujuan Wang, Jason G. Wood, Stephen L. Helfand, Haiyuan Yu and Siu Sylvia Lee Genes & Development 29(7) 718 (2015) https://doi.org/10.1101/gad.254144.114
Do Brain Networks Evolve by Maximizing Their Information Flow Capacity?
Chris G. Antonopoulos, Shambhavi Srivastava, Sandro E. de S. Pinto, Murilo S. Baptista and Danielle S Bassett PLOS Computational Biology 11(8) e1004372 (2015) https://doi.org/10.1371/journal.pcbi.1004372
Twitchin kinase interacts with MAPKAP kinase 2 in Caenorhabditis elegans striated muscle
Metabolomics and Natural-Products Strategies to Study Chemical Ecology in Nematodes
Arthur S. Edison, Chaevien S. Clendinen, Ramadan Ajredini, et al. Integrative and Comparative Biology 55(3) 478 (2015) https://doi.org/10.1093/icb/icv077
Genetic Screen Reveals Link between the Maternal Effect Sterile Genemes-1andPseudomonas aeruginosa-induced Neurodegeneration inCaenorhabditis elegans
Qiuli Wu, Xiou Cao, Dong Yan, Dayong Wang and Alejandro Aballay Journal of Biological Chemistry 290(49) 29231 (2015) https://doi.org/10.1074/jbc.M115.674259
Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis inC. elegans
The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans
S. D. Garafalo, E. S. Luth, B. J. Moss, et al. Molecular Biology of the Cell 26(10) 1887 (2015) https://doi.org/10.1091/mbc.E14-06-1048
Alicia A. Schwieterman, Alyse N. Steves, Vivian Yee, Cory J. Donelson, Aaron Pital, Taylor Voyles, Austin M. Howard, Danielle E. Ereddia, Kelsie S. Effrein, Jonathan L. McMurry, Brian D. Ackley, Andrew D. Chisholm and Martin L. Hudson (2015) https://doi.org/10.1101/022756
Caenorhabditis elegans polo-like kinase PLK-1 is required for merging parental genomes into a single nucleus
KLP-7 acts through the Ndc80 complex to limit pole number inC. elegansoocyte meiotic spindle assembly
Amy A. Connolly, Kenji Sugioka, Chien-Hui Chuang, Joshua B. Lowry and Bruce Bowerman The Journal of Cell Biology 210(6) 917 (2015) https://doi.org/10.1083/jcb.201412010
Teratozoospermia: spotlight on the main genetic actors in the human
REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans
George Chung, Ann M. Rose, Mark I.R. Petalcorin, Julie S. Martin, Zebulin Kessler, Luis Sanchez-Pulido, Chris P. Ponting, Judith L. Yanowitz and Simon J. Boulton Genes & Development 29(18) 1969 (2015) https://doi.org/10.1101/gad.266056.115
H3K23me2 is a new heterochromatic mark inCaenorhabditis elegans
Profiling the RNA editomes of wild-type C. elegans and ADAR mutants
Han-Qing Zhao, Pan Zhang, Hua Gao, Xiandong He, Yanmei Dou, August Y. Huang, Xi-Ming Liu, Adam Y. Ye, Meng-Qiu Dong and Liping Wei Genome Research 25(1) 66 (2015) https://doi.org/10.1101/gr.176107.114
MicroRNA-encoded behavior in
Drosophila
Joao Picao-Osorio, Jamie Johnston, Matthias Landgraf, Jimena Berni and Claudio R. Alonso Science 350(6262) 815 (2015) https://doi.org/10.1126/science.aad0217
New Insights into the Post-Translational Regulation of DNA Damage Response and Double-Strand Break Repair in Caenorhabditis elegans
Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans
Chaogu Zheng, Margarete Diaz-Cuadros and Martin Chalfie Proceedings of the National Academy of Sciences 112(43) 13243 (2015) https://doi.org/10.1073/pnas.1518686112
Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons
Hao-Ching Jiang, Jiun-Min Hsu, Chien-Ping Yen, et al. Proceedings of the National Academy of Sciences 112(28) 8768 (2015) https://doi.org/10.1073/pnas.1501831112
Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress
Communication between oocytes and somatic cells regulates volatile pheromone production inCaenorhabditis elegans
Daniel H. W. Leighton, Andrea Choe, Shannon Y Wu and Paul W. Sternberg Proceedings of the National Academy of Sciences 111(50) 17905 (2014) https://doi.org/10.1073/pnas.1420439111
C. elegansAnillin proteins regulate intercellular bridge stability and germline syncytial organization
SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity
Dinorah Leyva-Illades, Pan Chen, Charles E. Zogzas, Steven Hutchens, Jonathan M. Mercado, Caleb D. Swaim, Richard A. Morrisett, Aaron B. Bowman, Michael Aschner and Somshuvra Mukhopadhyay The Journal of Neuroscience 34(42) 14079 (2014) https://doi.org/10.1523/JNEUROSCI.2329-14.2014
Regulation of Experience-Dependent Bidirectional Chemotaxis by a Neural Circuit Switch inCaenorhabditis elegans
Yohsuke Satoh, Hirofumi Sato, Hirofumi Kunitomo, Xianfeng Fei, Koichi Hashimoto and Yuichi Iino The Journal of Neuroscience 34(47) 15631 (2014) https://doi.org/10.1523/JNEUROSCI.1757-14.2014
Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation inCaenorhabditis elegans
GLOBIN-5-Dependent O2Responses Are Regulated by PDL-1/PrBP That Targets Prenylated Soluble Guanylate Cyclases to Dendritic Endings
Einav Gross, Zoltan Soltesz, Shigekazu Oda, Veronica Zelmanovich, Zohar Abergel and Mario de Bono The Journal of Neuroscience 34(50) 16726 (2014) https://doi.org/10.1523/JNEUROSCI.5368-13.2014