Free Access
Issue
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 61 - 65
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200521161
Published online 15 January 2005
  1. Lafontan M, Langin D. Régulation neuro-humorale de la lipolyse : aspects physiologiques et physiopathologiques. Med Sci (Paris) 1998; 14 : 865–76.
  2. Holm C, Osterlund T, Laurell H, et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20 : 365–93.
  3. Langin D, Lafontan M. Lipolysis and lipid mobilization in human adipose tissue. In : Bray GA, Bouchard C, eds. Handbook of obesity. Etiology and pathophysiology, 2nd ed. New York : Marcel Dekker Inc, 2004 : 515–32.
  4. Langin D, Lucas S, Lafontan M. Millenium fat-cell lipolysis reveals unsuspected novel tracks. Hormon Metab Res 2000; 32 : 443–52.
  5. Capeau J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003; 19 : 834–9.
  6. Soeder KJ, Snedden SK, Cao W, et al. The β3-adrenergic receptor activates mitogen activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 1999; 274 : 12017–22.
  7. Ryden M, Dicker A, van Harmelen V, et al. Mapping of early signaling events in tumor necrosis-alpha-mediated lipolysis in human fat cells. J Biol Chem 2002; 277 : 1085–91.
  8. Zhang HH, Halbleib M, Ahmad F, et al. Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002; 51 : 2929–35.
  9. Greenberg AS, Shen WJ, Muliro K, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276 : 45456–61.
  10. Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 2003; 14 : 386–92.
  11. Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003; 93 : 700–9.
  12. Sengenes C, Berlan M, de Glisezinski I, et al. Natriuretic peptides : a new lipolytic pathway in human adipocytes. FASEB J 2000; 14 : 1345–51.
  13. Sengenes C, Bouloumié A, Hauner H, et al. Involvement of a cGMP-dependent pathway in natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003; 278 : 48617–26.
  14. Moro C, Galitzky J, Sengenes C, et al. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J Pharmacol Exp Ther 2004; 308 : 984–92.
  15. Sengenes C, Zakaroff-Girard A, Moulin A, et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol 2002; 283 : R257–65.
  16. Lafontan M, Arner P. Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 1996; 17 : 309–13.
  17. Galitzky J, Sengenes C, Thalamas C, et al. The lipid mobilizing effect of atrial natriuretic peptides is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 2001; 42 : 536–44.
  18. Moro C, Crampes F, Sengenes C, et al. Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB J 2004; 18 : 908–10.
  19. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004; 109 : 594–600.