Accès gratuit
Cet article est une note pour : [cet article]

Numéro
Med Sci (Paris)
Volume 29, Numéro 11, Novembre 2013
Page(s) 975 - 984
Section Traduction
Publié en ligne 8 octobre 2014
  1. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296: 298–300. [CrossRef] [PubMed]
  2. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296: 301–305. [CrossRef] [PubMed]
  3. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426. [CrossRef] [PubMed]
  4. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99–109. [CrossRef] [PubMed]
  5. Ting JPY, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity 2008; 28: 285–287. [CrossRef] [PubMed]
  6. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 1357–1361. [CrossRef] [PubMed]
  7. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. 674–677.
  8. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237–241. [CrossRef] [PubMed]
  9. Schattgen SA, Fitzgerald KA. The PYHIN protein family as mediators of host defenses. Immunol Rev 2011; 243: 109–118. [CrossRef] [PubMed]
  10. Fernandes-Alnemri T, Yu J-W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458: 509–513. [CrossRef] [PubMed]
  11. Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma- associated herpesvirus infection. Cell Host Microbe 2011; 9: 363–375. [CrossRef] [PubMed]
  12. Satoh T, Kato H, Kumagai Y, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 2010; 107: 1512–1517. [CrossRef]
  13. Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 2010; 11: 63–69. [CrossRef] [PubMed]
  14. Py BF, Kim MS, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 2013; 49: 331–338. [CrossRef] [PubMed]
  15. Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228–232. [CrossRef] [PubMed]
  16. Kanneganti TD, Lamkanfi M, Kim YG, et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 2007; 26: 433–443. [CrossRef] [PubMed]
  17. Pétrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14: 1583–1589. [CrossRef] [PubMed]
  18. Compan V, Baroja-Mazo A, López-Castejón G, et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 2012; 37: 487–500. [CrossRef] [PubMed]
  19. Dostert C, Pétrilli V, Bruggen R Van, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008 ; 320: Immunol 2008; 9: 847–856
  20. Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9: 857–865. [CrossRef] [PubMed]
  21. Bauernfeind F, Ablasser A, Bartok E, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci 2011; 68: 765–783. [CrossRef] [PubMed]
  22. Franchi L, Kanneganti T-D, Dubyak GR, et al. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 2007; 282: 18810–18818. [CrossRef] [PubMed]
  23. Costa A, Gupta R, Signorino G, et al. Activation of the NLRP3 inflammasome by group B streptococci. J Immunol 2012; 188: 1953–1960. [CrossRef] [PubMed]
  24. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?. Nat Rev Immunol 2010; 10: 210–215. [CrossRef] [PubMed]
  25. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11: 136–140. [CrossRef] [PubMed]
  26. Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36: 401–414. [CrossRef] [PubMed]
  27. Coers J, Vance RE, Fontana MF, et al. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 2007; 9: 2344–2357. [CrossRef] [PubMed]
  28. Abdelaziz DHA, Gavrilin MA, Akhter A, et al. Asc-dependent and independent mechanisms contribute to restriction of legionella pneumophila infection in murine macrophages. Front Microbiol 2011; 2: 18. [PubMed]
  29. Kofoed EM, Vance RE. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol. Bioessays 2012; 34: 589–598. [CrossRef] [PubMed]
  30. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117: 3720–3732. [CrossRef] [PubMed]
  31. Sahoo M, Ceballos-Olvera I, Barrio del L, et al. Role of the inflammasome, IL-1b, and IL-18 in bacterial infections. Sci World J 2011; 11: 2037–2050. [CrossRef]
  32. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011; 243: 206–214. [CrossRef] [PubMed]
  33. Jamilloux Y, Jarraud S, Lina G, et al. Legionella, légionnellose. Med Sci (Paris) 2012; 28: 639–645. [CrossRef] [EDP Sciences] [PubMed]
  34. Bruey J-M, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 2007; 129: 45–56. [CrossRef] [PubMed]
  35. Terra JK, Cote CK, France B, et al. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/ Nlrp1b. J Immunol 2010; 184: 17–20. [CrossRef] [PubMed]
  36. Kovarova M, Hesker PR, Jania L, et al. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol 2012; 189: 2006–2016. [CrossRef] [PubMed]
  37. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145: 745–757. [CrossRef] [PubMed]
  38. Anand PK, Malireddi RKS, Lukens JR, et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012; 488 : 389–393. [CrossRef] [PubMed]
  39. Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012; 36: 464–476. [CrossRef] [PubMed]
  40. Vladimer GI, Weng D, Paquette SWM, et al. The NLRP12 inflammasome recognizes Yersinia pestis.Immunity 2012; 37: 96–107. [CrossRef] [PubMed]
  41. Jones JW, Kayagaki N, Broz P, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 2010; 107: 9771–9776. [CrossRef]
  42. Schmitz N, Kurrer M, Bachmann MF, et al. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 2005; 79: 6441–6448. [CrossRef] [PubMed]
  43. Liu B, Mori I, Hossain MJ, et al. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 2004; 85: 423–428. [CrossRef] [PubMed]
  44. Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 2010; 11: 404–410. [CrossRef] [PubMed]
  45. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514–518. [CrossRef] [PubMed]
  46. Rathinam VAK, Fitzgerald KA. Inflammasomes and anti-viral immunity. J Clin Immunol 2010; 30: 632–637. [CrossRef] [PubMed]
  47. Nour AM, Reichelt M, Ku C-C, et al. Varicella-zoster virus infection triggers formation of an interleukin-1(IL-1)-processing inflammasome complex. J Biol Chem 2011; 286: 17921–17933. [CrossRef] [PubMed]
  48. Muruve DA, Pétrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008; 452: 103–107. [CrossRef] [PubMed]
  49. Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Med Sci (Paris) 2011; 27: 1019–1024. [CrossRef] [EDP Sciences] [PubMed]
  50. Bisbal C, La Salehzada T., RNase L. un acteur essentiel de la réponse cellulaire antivirale. Med Sci (Paris) 2008; 24: 859–864. [CrossRef] [EDP Sciences] [PubMed]
  51. Kowalinski E, Louber J, Gerlier D, Cusack S. RIG-I. Un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012; 28: 136–138. [CrossRef] [EDP Sciences] [PubMed]
  52. Pochet S, Seil M, El Ouaaliti M, Dehaye JP. P2X4 ou P2X7: lequel de ces deux récepteurs nous fera saliver?. Med Sci (Paris) 2013; 29: 509–514. [CrossRef] [EDP Sciences] [PubMed]
  53. Garaude J. Levée de l’immunité innée dans le traitement des cancers. Med Sci (Paris) 2013; 29: 985–990. [CrossRef] [EDP Sciences] [PubMed]
  54. Pellé KG, Ahouidi AD, Mantel PY. Le rôle des microvésicules dans l’infection palustre. Med Sci (Paris) 2013; 29: 960–962. [CrossRef] [EDP Sciences] [PubMed]