Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 6-7, Juin–Juillet 2012
Page(s) 618 - 624
Section M/S Revues
DOI http://dx.doi.org/10.1051/medsci/2012286015
Publié en ligne 16 juillet 2012
  1. O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010 ; 11 : 171–181. [CrossRef] [PubMed]
  2. Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 2010 ; 584 : 3819–3825. [CrossRef] [PubMed]
  3. Londoño-Vallejo A, Lenain C, Gilson E. Cibler les télomères pour forcer les cellules cancéreuses à rentrer en sénescence. Med Sci (Paris) 2008 ; 24 : 383–389. [CrossRef] [EDP Sciences] [PubMed]
  4. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998 ; 279 : 349–352. [CrossRef] [PubMed]
  5. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997 ; 33 : 787–791. [CrossRef] [PubMed]
  6. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005 ; 19 : 2100–2110. [CrossRef] [PubMed]
  7. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000 ; 110 : 768–779. [CrossRef] [PubMed]
  8. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008 ; 24 : 390–398. [CrossRef] [EDP Sciences] [PubMed]
  9. Hreidarsson S, Kristjansson K, Johannesson G, et al. A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure. Acta Paediatr Scand 1988 ; 77 : 773–775. [CrossRef] [PubMed]
  10. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999 ; 402 : 551–555. [CrossRef] [PubMed]
  11. Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998 ; 19 : 32–38. [CrossRef] [PubMed]
  12. Rashid R, Liang B, Baker DL, et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell 2006 ; 21 : 249–260. [CrossRef] [PubMed]
  13. Zeng XL, Thumati NR, Fleisig HB, et al. The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita. Hum Mol Genet 2011 ; 21 : 721–729. [CrossRef] [PubMed]
  14. Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001 ; 413 : 432–435. [CrossRef] [PubMed]
  15. Ly H, Calado RT, Allard P, et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood 2005 ; 105 : 2332–2339. [CrossRef] [PubMed]
  16. Du HY, Idol R, Robledo S, et al. Telomerase reverse transcriptase haploinsufficiency and telomere length in individuals with 5p-syndrome. Aging Cell 2007 ; 6 : 689–697. [CrossRef] [PubMed]
  17. Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 2008 ; 82 : 501–509. [CrossRef] [PubMed]
  18. Canudas S, Houghtaling BR, Bhanot M, et al. A role for heterochromatin protein 1γ at human telomeres. Genes Dev 2011 ; 25 : 1807–1819. [CrossRef] [PubMed]
  19. Yang D, He Q, Kim H, et al. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J Biol Chem 2011 ; 286 : 23022–23030. [CrossRef] [PubMed]
  20. Walne AJ, Vulliamy T, Marrone A, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007 ; 16 : 1619–1629. [CrossRef] [PubMed]
  21. Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 2008 ; 105 : 8073–8078. [CrossRef]
  22. Zhong F, Savage SA, Shkreli M, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 2011 ; 25 : 11–16. [CrossRef] [PubMed]
  23. Walne AJ, Vulliamy T, Beswick R, et al. Mutations in C16orf57 and normal-length telomeres unify a subset of patients with dyskeratosis congenita, poikiloderma with neutropenia and Rothmund-Thomson syndrome. Hum Mol Genet 2010 ; 19 : 4453–4461. [CrossRef] [PubMed]
  24. Du HY, Pumbo E, Ivanovich J, et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood 2009 ; 113 : 309–316. [CrossRef] [PubMed]
  25. Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots, qPCR. Nucleic Acids Res 2011 ; 39 : e134. [CrossRef] [PubMed]
  26. Alter BP, Baerlocher GM, Savage SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007 ; 110 : 1439–1447. [CrossRef] [PubMed]
  27. Vulliamy T, Marrone A, Szydlo R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004 ; 36 : 447–449. [CrossRef] [PubMed]
  28. Vulliamy TJ, Kirwan MJ, Beswick R, et al. Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One 2011 ; 6 : e24383. [CrossRef] [PubMed]
  29. Alter BP, Rosenberg PS, Giri N, et al. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica 2011 ; 97 : 353–359. [CrossRef] [PubMed]
  30. Touzot F, Gaillard L, Vasquez N, et al. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J Allergy Clin Immunol 2011 ; 129 : 473–482. [CrossRef] [PubMed]
  31. Revy P, Busslinger M, Tashiro K, et al. A syndrome involving intrauterine growth retardation, microcephaly, cerebellar hypoplasia, B lymphocyte deficiency, progressive pancytopenia. Pediatrics 2000 ; 105 : E39. [CrossRef] [PubMed]
  32. Touzot F, Callebaut I, Soulier J, et al. Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci USA 2010 ; 107 : 10097–10102. [CrossRef]
  33. Ye J, Lenain C, Bauwens S, et al. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010 ; 142 : 230–242. [CrossRef] [PubMed]
  34. Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004 ; 23 : 8611–8618. [CrossRef] [PubMed]
  35. Zinsser F. Atrophia cutis reticularis cum pigtnentatione, dystrophia unguim et leukuplakia oris. Ikonographia Dermatol (Hyoto) 1910 ; 5 : 219–223.