Accès gratuit
Numéro
Med Sci (Paris)
Volume 17, Numéro 12, Décembre 2001
Page(s) 1242 - 1251
Section Articles de Synthèse
DOI http://dx.doi.org/10.1051/medsci/200117121242
Publié en ligne 15 décembre 2001
  1. Zakany J, Duboule D. Hox genes in digit development and evolution. Cell Tissue Res 1999; 296 : 19–25.
  2. Olsen BJ, Reginato AM, Wang W. Bone Development. Annu Rev Cell Dev Biol 2000; 16 : 191–220.
  3. Karsenty G. Genetics of skeletogenesis. Dev Genet 1998; 22 : 301–13.
  4. Min H, Danilenko M, Scully S, et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 1998; 12 : 3156–61.
  5. Hogan BLM. Bone morphogenetic proteins : multifunctional regulators of vertebrate development. Genes Dev 1996; 10 : 1580–94.
  6. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6 : 348–55.
  7. van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 2000; 24 : 342–3.
  8. Peters H, Wilm E, Sakai N, Imai K, Maas R, Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development 1999; 126 : 5399–408.
  9. Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000; 24 : 391–5.
  10. Ducy P. Cbfa1 : a molecular switch in osteoblast biology. Dev Dyn 2000; 219 : 461- 71.
  11. Wilkie AOM. Craniosynostosis : genes and mechanisms. Hum Mol Gen 1997; 6 : 1647–56.
  12. Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng CX. A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Gen 2000; 9 : 2001–8.
  13. El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the Twist gene in the Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 42–6.
  14. Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Sathre-Chotzen syndrome. Nat Genet 1997; 15 : 36–41.
  15. Rice DPC, Aberg T, Chan YS, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127 : 1845–55.
  16. Jabs EW, Muller U, Li X, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 575 : 443–50.
  17. Liu YH, Kundu E, Wu L, et al. Premature suture closure and ectopic cranial bone in mice expressing Msx2 trransgene in the developing skull. Proc Natl Acad Sci USA 1995; 92 : 6137–41.
  18. Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 1998; 16 : 529–40.
  19. Bi W, Deng JM, Zhang Z, Behringer R, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22 : 85–9.
  20. Smits P, Li P, Mandel J, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001; 1 : 277–90.
  21. Colnot C, Sidhu SS, Balmain N, Poirier F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol 2001; 229 : 203–14.
  22. Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders : the achondroplasia family of skeletal dysplasia, Muenken craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrinol Rev 2000; 21 : 23–39.
  23. Nasaki MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13 : 233–6.
  24. Coffin JD, Florkiewicz RZ, Neumann J, et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 1995; 6 : 1861–73.
  25. Garofalo S, Kliger-Spatz M, Cooke JL, et al. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. J Bone Miner Res 1999; 14 : 1909–15.
  26. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12 : 390–7.
  27. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84 : 911–21.
  28. Chen L, Adar R, Yang X, et al. Gly369Cys mutationin mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999; 104 : 1517–25.
  29. Su WCS, Kitagawa M, Xue N, et al. Activation of Stat1 by mutant fibroblast growthfactor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386 : 288–92.
  30. Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 1999; 13 : 1361–6.
  31. Iwata T, Chen L, Li C, et al. A neonatal lethal mutationin FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Gen 2000; 9 : 1603–13.
  32. Segev O, Chumakov I, Nevo Z, et al. Restrained chondrocyte proliferation and maturation with abnormal growth plate vascularization and ossification in human FGFR-3G380R transgenic mice. Hum Mol Gen 2000; 9 : 249–58.
  33. Iwata T, Li C, Deng CX, Francomano CA. Highly activated Ffgr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Gen 2001; 10 : 1255–64.
  34. Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994; 8 : 277–89.
  35. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 1996; 93 : 10240–5.
  36. Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273 : 663–6.
  37. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-Related protein. Science 1996; 273 : 613–22.
  38. Hock JM. Anabolic actions of PTH in the skeletons of animals. J Musculoskel Neuron Interact 2001; 2 : 33–47.
  39. Lanske B, Amling M, Neff LA, Guiducci J, Baron R, Kronenberg HM. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 1999; 104 : 399–407.
  40. Jobert AS, Zhang P, Couvineau A, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormonerelated peptide in blomstrand chondrodysplasia. J Clin Invest 1998; 102 : 34–40.
  41. Karaplis AC, He B, Nguyen MTA, et al. Inactivating mutation in the human parathyroid hormone receptor type I gene in blomstrand chondrodysplasia. Endocrinology 1998; 139 : 5255–8.
  42. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995; 268 : 98–100.
  43. Schipani E, Lanske B, Hunzelman J, et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone- related peptide. Proc Natl Acad Sci USA 1997; 94 : 13689–94.
  44. Chung UI, Lanske B, Lee K, Li E, Kronenberg HM. The parathyroid hormone/ parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 1998; 95 : 13030–5.
  45. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13 : 2072–86.
  46. Karp SJ, Schipani R, St-Jacques B, Hunzelman J, Kronenberg HM. Indian Hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and – independent. Development 2000; 127 : 543–8.
  47. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in non-hypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocytes differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 2001; 15 : 467–81.
  48. Ueta C, Iwamoto M, Kanatani N, et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 2001; 153: 87–99.
  49. Gerber HP, Vu T, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5 : 623–8.
  50. Zelzer E, Glotzer DJ, Hartmann C, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 2001; 106 : 97–106.
  51. Haigh JJ, Gerber HP, Ferrara N, Wagner EF. Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 2000; 127 : 1445–53.
  52. Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107 : 295–304.
  53. Thomas DM, Carty SA, Piscopo DM, et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 2001; 8 : 303–16.
  54. Hansen MF, Koufos A, Gallie BL, et al. Osteosarcoma and retinoblastoma : a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 1985; 82 : 6216–20.